本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书全面的介绍了科学计算中解各种主要问题的数值方法,包括线性和非线性方程,二乘法,特征值,化,插值,积分,常微分方程和偏微分方程,快速傅立叶变换和随机数生成。本书的特点是:**以使用算法的读者为对象,重点讲授算法背后的思想和原理,而不是算法的详细分析。**强调敏感性和病态性等概念,对同一问题的不同算法进行比较和评价,提高读者对算法的鉴赏能力。**对每类问题都专门介绍和讨论有关的数学软件,包括在Internet上可以获得的免费软件和有版权保护的商业软件平台,供读者选用。**丰富的例题和习题,书中包括169道例题,500多道思考题,240多道练习题和200多道数值计算题。本书可作为研究生“数值分析”课程的或参考书,对于需要解决计算问题的科技人员,本书具有很高的参考价值。
Manydifferentmathematicalmethodsandconceptsareusedinclassicalmechanics:differentialequationsandphaseflows,smoothmappingsandmanifolds,LiegroupsandLiealgebras,symplecticgeometryandergodictheory.Manymodernmathematicaltheoriesarosefromproblemsinmechanicsandonlylateracquiredthataxiomatic-abstractformwhichmakesthemsohardtostudy.
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
Withtheadventofpowerfulputingtoolsandnumerousadvancesinmathematics,puterscienceandcryptography,algorithmiumbertheoryhaeeanimportantsubjectinitsownright.Bothexternalandinternalpressuresgaveapowerfulimpetustothedevelopmentofmorepowerfulalgorithms.Theseinturnledtoalargenumberofspectacularbreakthroughs.Tomentionbutafew,theLLLalgorithmwhichhasawiderangeofapplications,includingrealworldapplicationstointegerprogramming,primalitytestingandfactoringalgorithms,sub-exponentialclassgroupandregulatoralgorithms,etc...
本书从函数的非线性逼近出发,介绍了多尺度几何分析方法和理论,以及在图像处理领域中的应用。全书共13章,章系统地介绍了推动多尺度几何分析发展的数学和生理学背景,综述了图像的多尺度几何分析方法的历史沿革、成果及存在的问题;第2章从神经网络、统计估计、逼近论、调和分析等角度研究了多变量目标函数的逼近问题,并指出了这一领域研究的有关问题以及在信号和图像处理中的应用;第3章论述了基于脊波变换的直线特征检测方法;第4章介绍了脊波双框架系统;第5章介绍了自适应连续脊波网络;第6~13章分别介绍了曲线波、梳状波、子束波、楔形波、轮廓波、条带波、方向波和剪切波的基本理论及其应用,应用范围涉及图像压缩、去噪、融合、分割和分类等不同方面。本书从第3章起每一章都给出了相应的实验方法和实验结果。本书可作为高校电子
《干细胞科技与产业发展报告》主体内容共分三部分,分别为管理篇、科技篇和产业篇,主要跟踪分析国际干细胞领域研发策略,深入介绍干细胞科技研究进展,展望干细胞产业发展方向。在此基础上,提出对我国干细胞研究的建议,为我国干细胞领域政策制定及干细胞科研方向与产业发展提供参考依据和信息支持。《干细胞科技与产业发展报告》可供干细胞领域管理人员、广大科研人员和产业人员阅读和参考。
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
该书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题,薄板,薄壳,厚板,厚壳,弹性稳定,塑性力学,大位移,断裂,动力反应,徐变,岩土力学,混凝土与钢筋混凝土,流体力学,热传导,工程反分析,仿真计算,网格自动生成,误差估计及自适应技术。该书内容丰富,取材新颖,概念清晰提出了不少新的计算方法,并特别重视理论联系实际,兼有科学性和实用性,可供土木,水利,机械等工程专业的设计,科研人员使用,并可供高等院校有关专业的师生学习参考
《现代农业科技专著大系:小动物内科学》专门针对小动物疾病,将犬猫内科学、传染病学、寄生虫病学和产科学等多学科的常见病、多发病分门别类加以介绍,以满足兽医临床上复杂多样的小动物内科疾病诊治需要。《现代农业科技专著大系:小动物内科学》在撰写过程中力求文字简洁、内容精炼、重点突出,尽量明确诊断与治疗要点、紧贴临床实际需求,同时附有相关治疗方法,不仅方便兽医工作者在临床工作中查阅,亦可供大专院校兽医专业师生参考。
ThiookisdedicatedtoourwivesHelen,MaryLouandSongandourfamiliesfortheirsupportandpatienceduringthepreparationofthiook,andalsotoallofourstudentsandcolleagueswhoovertheyearshavecontributedtoourknowledgeofthefiniteelementmethod.InparticularwewouldliketomentionProfessorEugenioOniateandhisgroupatCIMNEfortheirhelp,encouragementandsupportduringthepreparationprocess.
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
Manydifferentmathematicalmethodsandconceptsareusedinclassicalmechanics:differentialequationsandphaseflows,smoothmappingsandmanifolds,LiegroupsandLiealgebras,symplecticgeometryandergodictheory.Manymodernmathematicaltheoriesarosefromproblemsinmechanicsandonlylateracquiredthataxiomatic-abstractformwhichmakesthemsohardtostudy.