本书作者一生从事有关等离子体物理学的实验和研究。本书试图从气候变化和能源着手,清晰、公正地把事实真相呈献给读者,主要讨论了受控聚变的物理原理与技术。本书会告诉读者,聚变研究已经进展到哪里、还要走多远,最终我们将怎样到达目的地。作者力图深入浅出地解读受控聚变的深奥物理内容,实现聚变的种种困难和巧妙的解决方案,使每个读者能够领会聚变物理学家所做的一切努力,这是一项艰巨的科学技术任务。
《量子物理的非常规方法(英文版)》包括的内容有:Noncommutative physics;Moment of momentum;Perturbation theory;Model Hamiltonian;Perturbation method;Inclusion of degenerate levels;Free scalar field;Free scalar field等。
本书全面、系统地阐述了原子核物理学这门学科的基本内容,并对亚核子物理、天体物理以及核辐射测量等作了简要介绍。全书共分十三章,内容包括核的基本性质、放射性、核辐射测量、核力、核衰变、核结构、核反应、中子物理、核裂变和聚变、亚核子物理和天体物理等。书中着重叙述这些方面的基础知识和物理规律,同时适当介绍当前的一些进展情况。 为了便于读者自学,本书语言力求简明易懂,内容注意由浅入深,各章均有习题和答案。书末还附有供做习题用的“部分核素数据和粒子数据”和“常用物理常量”。 本书可作为大学物理类专业原子核物理课程的教材,并可供其他有关专业的师生和从事原子能研究和应用的人员参考。 本书是1981年出版的《原子核物理》(高等学校试用教材)的修订版。原版书于1987年获核工业部教材特等奖。1988年获全国高
《粒子输运问题的数值模拟》主要讲述了,利用数值模拟研究微观粒子在介质中的输运行为,是核武器物理、核反应堆物理、激光核聚变、高温等离子体物理、X光激光物理、磁约束核聚变和惯性约束核聚变研究中不可缺少的重要工作。《粒子输运问题的数值模拟》分为6章,系统介绍了等离子体中带电粒子输运理论、辐射输运理论、辐射流体力学方程组、中子输运理论和核素燃耗、中子扩散理论及其数值模拟技术。给出了各类粒子输运方程及其涉及的输运参数的详细推导过程和计算方法,对高温介质的辐射不透明度、中子多群常数的计算与制作也给出了简单适用的算法。在此基础上,重点介绍了各类粒子输运方程和辐射流体力学方程组的离散格式与数值求解方法,给出了离散格式的稳定性判据和计算精度的数值检验方法,考虑了介质的运动对粒子输运和燃耗的影响
中国物理学会主编、湖南教育出版社出版《科学家谈物理》丛书,是一件很有意义的工作。半个世纪,特别是近二三十年来,物理学从亚核世界到整个宇宙广阔领域的探索研究,又取得了惊人的进展和成就。物理学在理论方法和实验技术上的新突破,使它同数学、生物学、化学、材料科学等邻近学科的结合与相互作用更密切了,促进了许多边缘、交叉学科以及高新技术与产业的诞生及迅速发展,出现了步伐越来越快的新的技术革命。这一切不仅广泛而深刻地丰富了人们对自然界规律的认识,并预示下世纪将会出现新的重大突破,而且已使人们的社会生活在短短的几十年问发生了从前难以想象的变化。
《量子场论(上)》为作者多年来在北京大学物理学院讲授《量子场论》、《量子规范场论》两门研究生课程讲义的基础上整理而成。 本书介绍了标准的现代量子场论与量子规范场论教科书应有的基础内容,如场量子化、微扰理论、正规化和重整化等。此外,由于相对论性量子场论的主要应用在于高能物理领域,关于强、弱、电相互作用的标准模型的建立与计算以及一些相关的场论知识,也是本书所讨论的重点内容之一。 除此以外本书的特色还在于花的篇幅介绍了色散关系,S 矩阵理论以及分波动力学的一些基础知识。这些知识较少在现代场论书里讨论,但是作者认为在目前的粒子物理的发展形势下,重新开始重视这些内容是值得的。它们是研究强子之间相互作用动力学必不可少的准备。基于同样理由,我们也花了一些篇幅介绍了有效场论技术
My intention is that this book serve as a reference work on interacting particle systems, and that it be used as the basis for an advanced graduate course on this subject. The book should be of interest not only to mathematicians, but also to workers in related areas such as mathematical physics and mathematical biology. The prerequisites for reading it are solid one-year graduate courses in analysis and probability theory, at the level of Royden (1968) and Chung (1974), respectively. Material which is usually covered in these courses will be used without ment. In addition, a familiarity with a number of other types of stochastic processes will be helpful. However, references will be given when results from speized parts of probability theory are used. No particular knowledge of statistical mechanics or mathematical biology is assumed. While this is the first book-length treatment of the subject of interacting particle systems, a number of surveys of parts of the field have appeared
《大学物理实验指导(第2版)》编著者张旭。 为了帮助学生解决在物理实验中经常遇到的一些问题,进一步提高学生的实验动手(操作)能力。鼓励学生勇于探索、创新,特编写了《大学物理实验指导(第2版)》一书。 本书着重介绍实验仪器及其操作方法、技巧,仪器的使用注意事项,在数据记录与处理中给出每个实验的具体要求,并安排了的分析思考题和拓展提高题。希望本书能帮助读者高效率地获取和理解实验知识,较好地掌握大学物理实验这门课程。 《大学物理实验指导》是与河北工业大学使用多年的普通高等教育“十一五”规划教材《大学物理实验》配套的教学辅助书,书中所列实验均是全国大学物理实验指导委员会在工科物理实验指导中所列的内容,其中部分实验作为设计性、特色研究性实验列入,可供理工科大学各专业物理实验教学参考使用。
When I first decided to write a book on string theory, more than ten years ago, my memories of my student years were much more vivid than they are today. Still, I remember that one of the greatest pleasures was finding a text that made a difficult subject accessible, and I hoped to provide the same for string theory. Thus, my first purpose was to give a coherent introduction to string theory, based on the Polyakov path integral and conformal field theory. No previous knowledge of string theory is assumed. I do assume that the reader is familiar with the central ideas of general relativity, such as metrics and curvature, and with the ideas of quantum field theory through non- Abelian gauge symmetry. Originally a full course of quantum field theory was assumed as a prerequisite, but it became clear that many students were eager to learn string theory as soon as possible, and that others had taken courses on quantum field theory that did not emphasize the tools needed for string theory. I have therefore tri
中国物理学会主编、湖南教育出版社出版《科学家谈物理》丛书,是一件很有意义的工作。半个世纪,特别是近二三十年来,物理学从亚核世界到整个宇宙广阔领域的探索研究,又取得了惊人的进展和成就。物理学在理论方法和实验技术上的新突破,使它同数学、生物学、化学、材料科学等邻近学科的结合与相互作用更密切了,促进了许多边缘、交叉学科以及高新技术与产业的诞生及迅速发展,出现了步伐越来越快的新的技术革命。这一切不仅广泛而深刻地丰富了人们对自然界规律的认识,并预示下世纪将会出现新的重大突破,而且已使人们的社会生活在短短的几十年问发生了从前难以想象的变化。