本书阐述了在计算机辅助设计与制造中曲线与曲面的数学模型,目的是为了帮助理解处于CAD软件核心的应用方法。从几何与解析的角度对贝氏和B-样条曲线与曲面进行了局部与整体的研究。大量的图表有利于帮助理解推理结论,证明总是从最简单的特例入手。 本书的读者范围极广:工程师、技术员、理工大学生、职业工校和高考预备班的学生。总之,面向所有使用或将使用贡面与曲线CAD软件的人。 读者还将从书中的图片上欣赏到精彩壮观的工业应用。 这本数学书揭去了盖在CAD软件“黑盒子”上的面纱。
本书是一本明知其输而博赢的概率分析。本书的目的是让普通人获得应用概率知识的能力。书中深入探讨了彩票、轮盘赌、补克游戏等以概率为核心的问题,引人入胜的分析经常使读者茅塞顿开。 有关机会掌握的数学原理,对于从根本上理解交易原理大有裨益。 概率与我们的日常生活息息相关。当我们过马路的时候,当我们上保险的时候,当我们买彩票的时候,我们都在和不确定性打交道。然而,普通人对概率所知甚少。在我们关于概率的知识中,有许多本应避免的错误。本书的目的是让普通人获得应用概率知识的能力。书中深入探讨了彩票、轮盘赌、扑克游戏等以概率为核心的问题,引人入胜的分析经常使读者茅塞顿开。你可以把它当做一本精妙的小说,也可以把它当做一本实战指导手册。
本书首先从均匀各向同性介质中弹性波动方程基本理论出发,给出波动方程的一般形式及其求解方法,为读者提供一个对所研究问题的基本描述。然后,基于一阶和二阶弹性波动方程,分别讨论了波动方程的交错网格有限差分方法、不规则网格有限差分方法,通过严格的公式推导建立不同格式的有限差分方程,给出了震源和边界条件的处理方法;针对均匀各向异性介质、非均匀各向异性介质、双相孔隙介质等复杂情况逐步展开探讨,给出并对各种差分格式作了稳定性和数值频散分析,导出了稳定性条件。在波动方程有限差分数值方法的理论分析基础上,本书还给出各种不同复杂介质模型的数值算例,并在书中提供相关源程序代码,便于读者迅速理解并掌握波动方程有限差分数值方法。 本书的读者对象包括大专院校本科生、研究生,也可作为讲授弹性波动力学的
本书系统地讨论了矩序列风险的形成、表现、测试、规避等一系列理论与实际问题,在建模理论与建模方法研究的基础上,进一步形成金融动态风险的识别与控制方案,一方面可以为在高阶矩风险方面的进一步研究提供理论基础,为带有高阶矩风险的动态组合投资、动态资产定价等相关主题研究提供理论依据与技术支持;另一方面,动态风险识别与控制方案可以为全国金融决策机构、投资决策机构、基金管理机制进行风险识别、进行组合投资规避金融风险的动态影响提供一套工具和方法。
书以点集拓扑与抽象测度为起点系统地讲述了实分析与泛函分析基本理论,内容包括拓扑与测度、抽象积分、Banach空间理论基础、线性算子理论基础、抽象空间几何学等,对不动点理论、Banach代数与谱理论、无界算子、向量值函数与算子半群等作了程度的讨论。 本书理论体系严谨,叙述深入浅出,论证细致,图例并茂,注重数学思想方法的启发与引导,便于自学与教学。本书适合数学及相关专业研究生和高年级本科生阅读,也可供本领域教师、科研人员参考。
本书并不是一本论文集,而是一系列讲稿的有机组合。本书涉及了Menger定理、重构、矩阵—树定理、Brooks定理、Grinberg定理、平面图等核心论题。在讲述时不仅关注原理本身,而且关注其推导过程。如果想对图论有个基本的了解,本书是选择。另外,书中每一章都附有习题、注记和详尽的参考文献。“相信本书会对在坚实的理论与技术基础上搭建起图论的大厦起到十分重要的作用。”
本书系统地讨论了矩序列风险的形成、表现、测试、规避等一系列理论与实际问题,在建模理论与建模方法研究的基础上,进一步形成金融动态风险的识别与控制方案,一方面可以为在高阶矩风险方面的进一步研究提供理论基础,为带有高阶矩风险的动态组合投资、动态资产定价等相关主题研究提供理论依据与技术支持;另一方面,动态风险识别与控制方案可以为全国金融决策机构、投资决策机构、基金管理机制进行风险识别、进行组合投资规避金融风险的动态影响提供一套工具和方法。
本书分五章,共包容命题、例题和习题600余例,其中绝大部分都给出了证明、解法或提示,并且在每章之末还作了一些重点注释,这些注释对于了解若干典型命题的意义与方法精神的要点相信是有帮助的。 可作为一般进修高等数学分析者的补充读物和分析课程的教学参考书,也可供大学数学专业的高年级生为训练分析技术及解题能力之用。
本书首先从均匀各向同性介质中弹性波动方程基本理论出发,给出波动方程的一般形式及其求解方法,为读者提供一个对所研究问题的基本描述。然后,基于一阶和二阶弹性波动方程,分别讨论了波动方程的交错网格有限差分方法、不规则网格有限差分方法,通过严格的公式推导建立不同格式的有限差分方程,给出了震源和边界条件的处理方法;针对均匀各向异性介质、非均匀各向异性介质、双相孔隙介质等复杂情况逐步展开探讨,给出并对各种差分格式作了稳定性和数值频散分析,导出了稳定性条件。在波动方程有限差分数值方法的理论分析基础上,本书还给出各种不同复杂介质模型的数值算例,并在书中提供相关源程序代码,便于读者迅速理解并掌握波动方程有限差分数值方法。 本书的读者对象包括大专院校本科生、研究生,也可作为讲授弹性波动力学的
有些人对于数学和艺术有成见,认为数学通过人的右脑工作,艺术通过人的左脑丁作。数学家理性而严谨,艺术家感性而浪漫。他们是两个完全不同类型的人群。本书要推翻这个成见。在本书中读者将看到一些数学家如何为艺术而孜孜不倦地工作,而一些艺术家如何热衷于数学的发现。事实上。现在已经有这样一些现代数学家他们不仅是现代数学的开拓者,而且是造诣很深的艺术家,同时也有这样一些艺术家。他们利用数学原理创作出使人意想不到的作品,在这里数学与艺术完全沟通起来了。 数学对艺术的影响由来已久,在文艺复兴时期艺术家利用透视原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪,萨尔瓦多·达利利用四维立方体的展开图画出了使人震撼的作品。艺术家们从斐波那契数列、曲面、麦比乌斯带中得到启发,数学