《美国微积分教材精粹选编》立足微积分教学的需要,从美国当前使用面广、影响大的教材中摘取、改编了大量有参考价值、又是教材中较为缺少的素材,并加以评注,汇集而成。全书内容分为两大类,一类是概念、原理的理解、表述和背景,共45条,摘编了美国教材中有特色的教学素材和处理方式,以及一些有用的背景材料;第二类是例题、习题精选及题解,共选编了各种不同题型、有利于培养学生能力又有新意的题目220多道,微积分projects17道。全书题目绝大部分都配有解答甚至一题多解,对其中不少题目还加了评注,以便更有目的地选用。 《美国微积分教材精粹选编》内容丰富,体例新颖,是对微积分教学素材的很好补充,可作为高等学校教授微积分课程的教师的教学参考书,也可供广大学生学习微积分时参考。
《近代数学史》从数学的定义、古代数学的遗产、17-18世纪各国数学发展概况、解析几何学、微积分、代数、数论、20世纪的数学、数学家小传等方面介绍了近代数学史。
本套书根据学生的年龄特征和认知能力将《语文课程标准》小学阶段知识和能力的学习分解至六个年级,训练难度循序渐进,知识点螺旋上升。每一册分别由25个主题训练单元组成,每一单元又分别由学习导引和想想练练构成。 “学习引导”起讲解知识点的作用,文字叙述和所举的例子适合所在年级学生的认知水平。 “想想练练”通过训练达到掌握知识点的目的,题型种类多,训练针对性强。 本书为修订版,在原来的基础上丰富了题量,以达到一步一落实,一步一提高的目的。
《自然哲学的数学原理》是一次科学革命的集大成之作,它在物理学、数学、天文学和哲学等领域产生了巨大影响。在写作方式上,牛顿遵循古希腊的公理化模式,从定义、定律(即公理)出发,导出命题;对具体的问题(如月球的运动),把从理论导出的结果和观察结果相比较。全书共分五部分,首先“定义”,这一部分给出了物质的量、时间、空间、向心力等的定义。第二部分是“公理或运动的定律”,包括的运动三定律。接下来的内容分为三卷。前两卷的标题一样,都是“论物体的运动”。一卷研究在无阻力的自由空间中物体的运动,许多命题涉及已知力解定受力物体的运动状态(轨道、速度、运动时间等),以及由物体的运动状态确定所受的力。第二卷研究在阻力给定的情况下物体的运动、流体力学以及波动理论。
本习题集可以作为作者在武汉大学出版社先生出版的《数学分析习题休及其解答》的续编,因为在那里有关度量空间部分的习题是放在本习题集中的。 本习题集的绝大部分题目选自参考书目[1],[3],[5]的练习题。为了丰富课程内容及拓展知识面,作者少量地选择了其他参考书目中的一些重要问题作为本习题集的习题,对这些问题的原题解都作了必要的加工,补充了原题解中被省略的证明,弥补了一些论证上的缺陷和不足。作者对所引参考书目的作者表示感谢。