部分开始解决问题第二部分算法分析第三部分算法设计范式第四部分一些的算法第五部分基本数据结构第六部分树第七部分图
近年来,随着数据获取能力的不断提高和计算机的飞速发展,人们获得的数据信息越来越多,数据维数越来越高,如何寻找这些海量高维数据信息中潜在的规律,更好地为人类服务,是目前人工智能面临的挑战之一。 在没有标签信息的情况下,对高维数据实施维数约简的同时进行归类分析,挖掘数据的内在低秩结构,是当前机器学习的一个难点、也是热点之一。谱聚类作为聚类分析的一种,不仅对初始值和数据噪声有更好的鲁棒性,而且实施简单,可以被标准的线性代数方法进行有效求解。因此,基于低秩结构学习的谱聚类理论和方法在机器学习、人工智能、大数据技术方面有着更加广阔的应用空间。 本书主要研究了基于低秩结构学习的谱聚类理论与方法,从矩阵和张量两方面进行研究。重点关注紧凑低秩表示学习、鲁棒的无监督特征选择学习、图正则化低秩因
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种有趣的问题为目标,教读者用Python、C 、JavaScr
Qt是软件开发领域中非常著名的C 可视化开发平台。本书以Qt 5.11为平台,介绍Qt和QML编程及其应用开发。全书分为5个部分。第1部分为Qt基础,在上一版的基础上增加了Qt操作表格处理软件Excel数据和字处理软件Word数据的内容。第2部分为Qt综合实例,重新设计了电子商城系统、MyWord字处理软件、微信客户端程序。第3部分为Qt扩展应用OpenCV,首先配置OpenCV-3.4.3,然后介绍典型图片处理。第4部分为QML和Qt Quick及其应用,介绍了QML及Qt Quick相关内容,【综合实例】为多功能文档查看器。第5部分为附录,介绍了C 相关知识和Qt 5简单调试。本书提供配套的视频,分析典型案例,通过扫描二维码播放。为了方便读者上机练习,书中实例提供源代码,其编号为CH×××。源代码及其工程文件可从华信教育资源网(http://www.hxedu.com.cn)免费下载。本书既可作为Qt 的学习和参考用书,也可
《程序员代码面试指南:IT名企算法与数据结构题目解》是一本程序员面试宝典!《程序员代码面试指南:IT名企算法与数据结构题目解》对IT名企代码面试各类题目的解进行了总结,并提供了相关代码实现。针对当前程序员面试缺乏专业题目汇总这一痛点,《程序员代码面试指南:IT名企算法与数据结构题目解》选取将近200道真实出现过的经典代码面试题,帮助广大程序员的面试准备做到万无一失。“刷”完本书后,你就是“题王”! 《程序员代码面试指南:IT名企算法与数据结构题目解》采用题目+解答的方式组织内容,并把面试题类型相近或者解法相近的题目尽量放在一起,读者在学习本书时很容易看出面试题解法之间的联系,使知识的学习避免碎片化。《程序员代码面试指南:IT名企算法与数据结构题目解》将所有的面试题从难到易依次分为“将、校、尉、
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种有趣的问题为目标,教读者用Python、C 、JavaScr
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。 《集成学习:基础与算法》分为三部分。部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests 等经典算法,平均、投票和Stacking 等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展;第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习及提升可理解性方面的进展。此外,《集成学习:基础与算法》还在每章的“拓展阅读”部分提供了相关的进阶内容。
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种有趣的问题为目标,教读者用Python、C 、JavaScr
本书以海量图解的形式,详细讲解常用的数据结构与算法,并结合竞赛实例引导读者进行刷题实战。通过对本书的学习,读者可掌握22种高级数据结构、7种动态规划算法、5种动态规划优化技巧,以及5种网络流算法,并熟练应用各种算法解决实际问题。 本书总计8章。第1章讲解实用数据结构,包括并查集、优先队列;第2章讲解区间信息维护与查询,包括倍增、ST、RMQ、LCA、树状数组、线段树和分块;第3章讲解字符串处理,包括字典树、AC自动机和后缀数组;第4章讲解树上操作问题,包括点分治、边分治、树链剖分和动态树;第5章讲解各种平衡二叉树,包括Treap、伸展树和SBT;第6章讲解数据结构进阶,包括KD树、左偏树、跳跃表、树套树和可持久化数据结构;第7章讲解动态规划及其优化,包括背包问题、线性DP、区间DP、树形DP、数位DP、状态压缩DP、插头DP和动态规