知识图谱已被广泛应用于智能信息搜索、自动问答、决策分析等领域。本书以构建领域多层次知识体系支撑智能应用为目标,系统地介绍实体关系图谱、事理图谱和业务主题图谱构建过程中涉及的关键技术,如知识抽取、知识融合、知识存储、事件和场景抽取、事件模式库构建、事理规则挖掘、层次主题挖掘、动态主题挖掘、对象属性挖掘、主题要素关联挖掘等。此外,本书还提供丰富的案例,展现如何利用知识图谱实现领域智能应用。 本书内容对于知识图谱研究和领域应用具有的参考意义,既适合专业人士了解知识图谱和深度学习前沿热点,又适合在相关领域从事知识图谱应用开发的人员学习,还可以作为高等院校人工智能专业师生的参考教材。
深度学习网络正在变得越来越小。Google Assistant团队可以使用大小只有14KB的模型检测单词——模型小到可以在微控制器上运行。在这本实用的书中,你将进入TinyML的世界。TinyML将深度学习和嵌入式系统相结合,使得微型设备可以做出令人惊叹的事情。 本书解释了如何训练足够小的模型以适合任何环境。对于希望在嵌入式系统中搭建机器学习项目的软件及硬件开发人员而言,本书是一个理想的指南,它将一步步地指导你搭建一系列TinyML项目。阅读本书不需要任何机器学习或者微控制器开发经验。 你将深入了解以下内容: 如何创建语音识别程序、行人检测程序和响应手势的魔杖程序。 如何使用Arduino和超低功耗微控制器。 机器学习的基本知识以及如何训练自己的模型。 如何训练模型以理解音频、图像和加速度传感器数据。 如何使用TensorFlow Lite for Microcontrollers,
《模式识别》阐明了模式识别学科的科学意义与战略价值,总结了模式识别学科的发展历史及其研究规律,梳理了模式识别学科在基础理论、计算机视觉、语音语言信息处理、模式识别应用技术等方面的发展现状,分析了模式识别学科中尚未完全解决的关键科学问题,确定了面向学科前沿的发展方向和研究重点,指出了模式识别技术创新的新挑战、新使命与新机遇,提出了模式识别学科发展的保障措施与政策建议。《模式识别》旨在为模式识别学科的健康稳定发展奠定坚实的科学基础,促进模式识别在解决国计民生重大需求方面做出应有的贡献。
本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。
因素空间是信息、智能和数据科学的数学基础理论。本书将介绍因素空间如何将智能生成的统一机制落实到各行各业,开展全民智能孵化的洛神工程。 本书主要内容包括:介绍因素的范式特质和智能孵化洛神工程的内容;介绍因素空间对智能生成机制的落实细则;介绍因素显隐的理论,将现有人工智能数学算法归结到回归和优化两大方面,突出支持向量机与因素空间对支持向量机的改进,并介绍作者在线性规划方面的独特贡献;强调智能的核心是因果分析,支持珀尔的因果革命论,并对其中的瑕疵进行改进;作为智能孵化的一个应用,介绍循证因素工程。
《基于视觉的运动目标检测跟踪》主要研究内容为基于计算机视觉、数字图像处理、数字视频处理等理论,实现视频中运动目标的检测跟踪。根据视觉感知环境将研究内容分为单目、双目和多目视觉下的运动目标检测和跟踪。在单目视觉下,分别针对静止背景下的可见光视频中的目标检测跟踪、红外小目标的检测跟踪及动态背景下运动目标检测跟踪进行了研究,给出了运动目标检测、位置预测及模板匹配的跟踪思路和方法。此外,结合机器学习技术的广泛应用,针对目标长时在线跟踪中的漂移问题、尺度变换问题及目标定位问题,研究了机器学习的方法。在双目和多目视觉下,结合多摄像机之间的空间位置关系,就多目标跟踪中的三维跟踪、融合跟踪等技术进行了研究,并就其在多目视觉下基于标记点的运动捕获这一具体应用中的实现进行了研究,解决了其中的遮