本手册以高等数学的公式为主线,以简洁的形式分门别类地详细介绍了高等数学的主要公式、定义、定理、图形以及各种题型的解题方法和技巧.除了高等数学教材中的基本内容和公式、常见解题方法和技巧外,本手册还大量收集了一般教材中没有的,但在解题中有用的公式、特殊的解题方法和技巧. 使用本手册可以帮助读者迅速复习、回忆和掌握高等数学的公式、解题方法和技巧,以提高高等数学的学习效率、解题能力和考试成绩. 本手册适合学习高等数学(微积分)的大学一年级学生,也适合复习高等数学并准备考研究生的高年级学生,对学习和复习高等数学的其他读者也有参考价值. 本手册还可作为高等数学教师的一本方便的教学参考书和工具书.
《大学数学竞赛辅导及真题详解》依据非数学类专业全国大学生数学竞赛考试大纲年制定编写而成,共分五个部分。部分为考纲解析,通过具体实例突出大纲对基本概念、基本性质及基本运算等基础能力的培养与训练第二部分为专题讲座,主要围绕考试大纲中的难点和疑点以及学习过程中的突出问题,为学生排忧解难第三部分为强化提高,主要包含来自外大学生数学竞赛的一些特色试题,其构思巧妙、方法灵活、技巧性强,有利于提高学生参与竞赛的实战能力第四部分为全真试题,包含从~年全国大学生数学竞赛的预赛和决赛共套真题及其解析,学生在复习过程中可以对照试题解析,有目的地寻找存在的问题,从而大幅度提高应考水平;第五部分为模拟试题,包含套模拟试题及解答,考生可藉此作一次全面自检自查,并适应数学竞赛的测试场景 本书可供准备
本书适用于应用型高等院校所有专业的学生使用。书中汇集了一元函数微积分学(极限、导数、不定积分、定积分)这‘基础模块中的基本练习,还精选了常微分方程、空间解析几何、多元函数微积分、级数和线性代数这六个应用模块的相关练习。
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
本书特点: 1.遵循认识规律,揭示数学发现 对于概念、定理、公式,尽可能从直观背景出发,提出问题,分析问题,得出结论,然后再抽象论证。将数学的基本思想融人各教学环节中,引导学生学会从量化的角度数学地思考和处理问题。 2.加强综合应用数学知识能力的训练 各章节的例题和习题比较丰富,特别是适量选编了一些综合性的题目。对于难度较大的题目,我们注意推敲再三,对运算技巧作了淡化处理,因为此类技巧并未涉及基本的数学思想和方法。
《高等数学同步指导(下)/普通高等学校“十三五”规划教材》包括空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数,每章包含如下几个板块:大纲要求、常考题型、本章重点、本章内容精要、经典例题分析与解答指南、课后习题选解、考研真题荟萃、自测题。 《高等数学同步指导(下)/普通高等学校“十三五”规划教材》适用于所有理工类、金融经济类的本科学生,也可作为考研学生的辅导用书和各高校老师的教学参考用书。
《高数叔概率统计入门》全书基本按照高等数学教材内容,以小说的章回体体例编排,语言风趣幽默,版式设计精美,还配有视频讲解,把枯燥乏味、生涩难懂的概率论与数理统计知识巧妙地讲解得生动有趣,易于读者理解,适合高中生、在校大学生等对概率论与数理统计感兴趣的初学者阅读,也适合想回顾概率论与数理统计知识的读者阅读。知识讲解与例题有机结合,图文并茂,双色印刷,再配上相关视频,给读者一种全方位的学习体验。
本书按大纲常考知识点分为18讲内容,且全书内容均为张宇老师亲自独立编写完成,故书名称为《张宇高等数学18讲》.每一讲又分四个模块:考纲要求、内容精讲、例题精解和习题精练. 考纲要求:编者将大纲对知识点的要求,以图表的形式,分数学一、数学二、数学三呈现给读者,更具有针对性.考生可根据自己所考科目对号入座,首先做到将自己该了解、理解、会以及掌握哪些知识了然于胸. 内容精讲:编者以轻松且类似于“面对面讲课”的语言形式精讲知识点,给读者虽在看书,但仿佛在听讲课般的感受. 例题精解:例题选取均是作者从众多经典题目中认真筛选出来的,可谓经典中的经典.每道题目均具代表性,绝不是大量题目的简单堆砌. 习题精练:习题的选择更具考查目的,均尽力模拟真题的形式来设置题目,且配有详尽的解析,
本书按大纲常考知识点分为18讲内容,且全书内容均为张宇老师亲自独立编写完成,故书名称为《张宇高等数学18讲》.每一讲又分四个模块:考纲要求、内容精讲、例题精解和习题精练. 考纲要求:编者将大纲对知识点的要求,以图表的形式,分数学一、数学二、数学三呈现给读者,更具有针对性.考生可根据自己所考科目对号入座,首先做到将自己该了解、理解、会以及掌握哪些知识了然于胸. 内容精讲:编者以轻松且类似于“面对面讲课”的语言形式精讲知识点,给读者虽在看书,但仿佛在听讲课般的感受. 例题精解:例题选取均是作者从众多经典题目中认真筛选出来的,可谓经典中的经典.每道题目均具代表性,绝不是大量题目的简单堆砌. 习题精练:习题的选择更具考查目的,均尽力模拟真题的形式来设置题目,且配有详尽的解析,
本书共分为七章,主要内容包括:函数、极限和连续;导数与微分;微分中值定理与导数的应用;不定积分;定积分;定积分的应用;微分方程。每章分若干节,每节都由以下三个部分组成:内容提要,列出该节的核心内容,即主要定义、定理及计算公式;疑问与解答,将该节中较易混淆
教材精选高等数学的基本内容,以一元函数微积分学为主线,突出基本知识和基本运算;教材注意分散教学难点,对一些重要概念做了深入浅出的讲述,突出直观描述和几何、物理解释,淡化理论证明和推导,降低了学生掌握同等程度知识的难度。教材编写在通俗易懂的前提下,尽可能体现数学的严密性,适当考虑知识的系统性。教材精选高等数学的教学内容,强调以一元函数微积分为主,突出基础知识和基本运算,不求一味深入,对一些重要概念做了深入浅出的讲述,注重向学生渗透微积分的思想方法;分散教学难点,以几何解释和直观描述处理微积分中的重要概念,淡化理论证明和推导,降低了学生掌握同等程度知识的难度。
《高等数学》(工本)(2006年版)是根据全国高等教育自学考试指导委员会2006年修订的《高等数学(工本)自学考试大纲》进行编写的,是工科各专业本科“高等数学”课程自考教材。《高等数学》(工本)(2006年版)作者具有丰富的自考助学经验,且参与了本课程考试大纲的修订工作,对自学考试的要求及自考生的情况有深刻的了解。全书共分六章,内容包括:向量代数与空间解析几何、多元函数的微分学、重积分、曲线积分与曲面积分、常微分方程、无穷级数等。每节配有适量的习题,每章配有复习题,且所有习题在书后均有参考答案。另外,每章末附有该章的内容小结,书末附有本课程的自学考试大纲和样卷,以供参考。
本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。 本书、二、三篇分别由唐志远,姚昌瑞,吴元恺执笔。 第二版由梁昆淼教授初审,并由理科数学教材编审委员会高等数学编审组委托欧维义副教授复审。 本书版系由梁昆淼教授与马元鹏同志主审。
本书根据高等教育面向21世纪教学内容和课程改革总目标的要求,结合作者30年来讲授文科高等数学课程的实践,我们又编写了这套《大学文科数学简明教程》教材,其中包括主教材《大学文科解题指南》共三册。本套教材
本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。 本书、二、三篇分别由唐志远,姚昌瑞,吴元恺执笔。 第二版由梁昆淼教授初审,并由理科数学教材编审委员会高等数学编审组委托欧维义副教授复审。 本书版系由梁昆淼教授与马元鹏同志主审。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本书主要是根据“数学建模”课程的教学和数学建模竞赛培训活动的实际需要,以及作者多年从事相关工作的实践经验和体会编写而成的,从内容上突出体现了“广、浅、新、用”的现代应用特点。 主要内容包括量纲分析,集合分析、微分方程、差分方程、插值与拟合、层次分析、概率分布、数理统计、回归分析、线性规划、整数规划、非线性规划、动态规划、排队论、对策论、随机性决策分析、多目标决策分析、图论、模糊数学和灰色系统分析等20大类数学建模方法,每一种方法都有相应的应用案例分析及参考案例。附有历年中国大学生数学建模竞赛和美国大学生数学建模竞赛的问题,以及MATLAB的使用简介。 本书可作为专科生、本科生、研究生的“数学建模”课程教材外,还特别适用于数学建模竞赛的培训教材,以及供从事应用研究的工程技术人员参考之
本书是工科硕士研究生教材,简明地阐述了模糊数学的基本理论和基本方法。全书共11章,内容包括:F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书也可作为本科高年级教材,或供工程技术人员自学参考。