全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
《高等数学考点分析与题解(2013版专升本考试用书)》由邱成功主编,全书共分为10章,内容包括函数、极限和连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,微分方程,向量代数与空间解析几何,多元函数微分学,二重积分,无穷级数。各章分“考试要求”、“考试内容”、“典型例题”、“历年真题”四部分。“考试要求”部分精炼地给出了对考试的具体要求。“考试内容”部分详细地给出了与考试有关的章节内容,保证各个知识层次的学生均可从中获益。“典型例题”部分根据历年考试及对知识的掌握要求,既有基础性题目,又有新颖和创造性的题目,并附有详细的解析过程,可让学生在学习知识的同时,掌握解题的方法和技巧,收到事半功倍的效果。“历年真题”部分将近几年专升本高等数学考试真题按章节内容列出,且给出详细的解
《高等数学习题全解指南·上册(同济·第5版)》是与同济大学应用数学系主编的《高等数学》第五版相配套的学习辅导书,由同济大学应用数学系的教师编写。《高等数学习题全解指南·上册(同济·第5版)》内容由三部分组成,部分是按《高等数学》(上册)的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学考试数学试题选解,所选择的试题以工学类为主,少量涉及经济学类试题;第三部分是同济大学高等数学考卷选编,以及考题的参考解答。 《高等数学习题全解指南·上册(同济·第5版)》对教材具有相对的独立性,可为工科和其他非数学类专业学生学习以及准备报考硕士研究生的人员复习高等数学提供解题指导,也可供讲授《高等数学》的教师在备课和批改作业时参考。
本书根据高等教育面向21世纪教学内容和课程改革总目标的要求,结合作者30年来讲授文科高等数学课程的实践,我们又编写了这套《大学文科数学简明教程》教材,其中包括主教材《大学文科解题指南》共三册。本套教材
《高等数学习题全解指南·上册(同济·第5版)》是与同济大学应用数学系主编的《高等数学》第五版相配套的学习辅导书,由同济大学应用数学系的教师编写。《高等数学习题全解指南·上册(同济·第5版)》内容由三部分组成,部分是按《高等数学》(上册)的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学考试数学试题选解,所选择的试题以工学类为主,少量涉及经济学类试题;第三部分是同济大学高等数学考卷选编,以及考题的参考解答。 《高等数学习题全解指南·上册(同济·第5版)》对教材具有相对的独立性,可为工科和其他非数学类专业学生学习以及准备报考硕士研究生的人员复习高等数学提供解题指导,也可供讲授《高等数学》的教师在备课和批改作业时参考。
本书版于2000年由高等教育出版社和施普林格出版社出版,经过修改于2003年再版,反响良好,被多所学校数学建模与数学实验课程或大学生数学建模竞赛辅导作为教材选用。 本书集应用数学知识、数学建模和数学实验为一体,注重数学建模思想介绍,重视数学软件在实际中的应用。在这次修订中增加了习题答案,修改了第3章的线性规划的内容,并增加了LINGO解线性规划内容。第3版同样附上了教学光盘,光盘中包含本书的全部源程序和课堂教学的PowerPoint幻灯片。 本书可作为理工科院校本科数学建模、数学实验课程的教材,也可作为数学建模竞赛的参考书。
本书是一本着重实际应用又兼顾理论要求的运筹学教材. 主要内容包括线性规划、整数规划、目标规划、非线性规划、动态规划及决策分析. 各章附有习题,书末有习题解答和提示. 本书对数学基础要求较低,适用专业范围广;基本概念与基本理论阐述清晰透彻,密切联系实际,各种算法推导详细,配有丰富实用的例题. 本书可作为工程硕士研究生以及经济管理等非数学专业大学生、研究生的教材,也可供科技人员和管理人员参考。
为了适应高等工科院校本科学生对高等数学课程学习的需要,结合当前的教学实际,我们编写了《高等数学解题方法》,作为学习“高等数学”课程的参考用书,全书共有八章,分上、下两册,包括了高等数学的基本内容。 本书侧重于提高学生的解题能力,通过对本书例题选解的阅读,可以启发读者的解题思路,提高解题能力,收到举一反三的效果。本书的主要特点是:概念清楚,重点突出,例题丰富,解法新颖;各章均选编了典型的综合例题,并强调了内容的融会贯通。 为了使学生了解各章的重点内容和教学要求,本书还增写了附录,附录部分包括了天津大学1992-1995级的期中、期末考试试卷,便于学生复习、参考。 本书对报考工科院校硕士研究生和参加高等教育自学考试的读者复习高等数学,加强基本解题方法的训练都有较大的帮助。
本书是*高等职业教育基础课规划教材之一,也是作者在经过多年教学实践并在吸收我国“十五”期间高职高专工科类高等数学教改成果的基础上编写而成的。主要内容包括常微分方程、空间解析几何、多元函数微分学、多元函数积分学、级数、拉普拉斯变换。 本书可作为高职高专工科各专业通用的高等数学教材,也可作为工程技术人员更新高等数学知识的自学用书。
本书主要是根据“数学建模”课程的教学和数学建模竞赛培训活动的实际需要,以及作者多年从事相关工作的实践经验和体会编写而成的,从内容上突出体现了“广、浅、新、用”的现代应用特点。 主要内容包括量纲分析,集合分析、微分方程、差分方程、插值与拟合、层次分析、概率分布、数理统计、回归分析、线性规划、整数规划、非线性规划、动态规划、排队论、对策论、随机性决策分析、多目标决策分析、图论、模糊数学和灰色系统分析等20大类数学建模方法,每一种方法都有相应的应用案例分析及参考案例。附有历年中国大学生数学建模竞赛和美国大学生数学建模竞赛的问题,以及MATLAB的使用简介。 本书可作为专科生、本科生、研究生的“数学建模”课程教材外,还特别适用于数学建模竞赛的培训教材,以及供从事应用研究的工程技术人员参考之
本书分练习题、答案或提示两部分,练习题内容涉及一元函数微积分学、空间解析几何、微分方程、多元函数微积分学、无穷级数,题型分为计算、证明及应用题(A类)、选择题(B类)、填空题(C类)三大类,共有1716道练习题。 根据这些年的教学实践和广大师生对本《练习题集》提出的希望与要求,我们对《练习题集》进行了一些修改,作为修订版予以再次出版。 在这次修订中,练习题的题型没有变化,主要是补充和修改了些习题,对初版编写和排印中的疏漏之处,进行了校正,并再次审核了全部习题答案。 修订后,A类题1100道,B类题300道,C类题350道,共计1750道练习题。
本书共分为七章,主要内容包括:函数、极限和连续;导数与微分;微分中值定理与导数的应用;不定积分;定积分;定积分的应用;微分方程。每章分若干节,每节都由以下三个部分组成:内容提要,列出该节的核心内容,即主要定义、定理及计算公式;疑问与解答,将该节中较易混淆