本书为代数学引论,其主要内容为线性代数多项式理论,除在第10章介绍了环,城等基本概念外,还在最后一章介绍了群论的初步知识 本书可供高等院校本科生、研究生及数学爱好者参考使用。
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。 本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅读。
本书为《代数学教程》第六卷,全书系统地讨论了代数学中线性代数的各个内容,如线性方程组理论、矩阵的理论基础、二次型与埃尔米特型、抽象的向量空间、具有度量的线性空间等,在编写过程中作者引用了大量的文献,并附于书末,供读者参考使用. 本书适合高等院校理工科师生及数学爱好者阅读.
丢番图逼近论是数论的重要而古老的分支之一 , 圆周率 的估计 、 天文研究和古历法的编制 , 以及连分数展开 , 超越数的构造 , 等等 , 都促成这个分支的形成 。 近代和现代数学的发展 , 特别是丢番图方程和超越数论的研究 , 以及一致分布点列在拟 Monte Carlo 方法中的应用等 , 又使它发展成为一个活跃的当代数论研究领域 。Diophantine Approximation 是关于丢番图逼近论的一本专著 ,1980 年列入 Springer 出版社著名的 Lecture Notes in Mathematics 系列丛书出版 , 问世后即被各国数论研究人员广泛引用 , 成为一本关于丢番图逼近论的经典著作 。
本书的俄文版曾经作为俄罗斯的师范学院数学系的教学参考书.该书共分为九章,作者从复变函数论的基础讲起,由浅入深,并在后两章中分别讲述了奇点、复变函数论在代数和分析上的应用以及保角映象、复变函数论在物理问题中的应用等. 本书适合大学生、高等数学研究人员参考使用.
《解析数论问题集(第2版)》是课后大约500个解析数论习题的汇编,同时也是解析数论的基本教程。全书共分为两部分:习题与解答。读者可通过这些习题学习解析数论的一些重要方法,了解解析数论的研究领域。 《解析数论问题集(第2版)》可供大专院校数学系师生、研究生及相关的学科工作者阅读。
内容简介 本书是美国著名数学竞赛专家TituAndreescu教授及其团队精心编写的试题集系列中的一本。 本书从解题的视角举例说明初等代数中的基本策略和技巧,书中涵盖了初等代数的众多经典论题,包括因式分解、二次函数、方程和方程组、Vieta定理、指数和对数、无理式、复数、不等式、连加和连乘、多项式以及三角代换等主题。为了让读者能够对每章中讨论的策略和技巧进行实践,除例题之外,作者精选了108个不同的问题,包括54个入门问题和54个高级问题,给出了所有这些问题的解答,并对不同的方法进行了比较。 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考。
本书是关于线性代数的专用工具书,内容涉及线性代数学的基础内容:行列式与矩阵、向量与线性方程组、特征值理论及其应用、线性空间与线性映射以及欧氏空间. 本书是按题典模式编写的题库. 为了便于查找,除了将内容按章分列以外,在每一章中再按不同主题细分成若干小节.在各节的开始处,一般都简述了本节所涉及的基本概念、公式与结论. 全书共精选了约1100道例题,有深有浅,覆盖面广. 在题型方面,以计算题为主,也有大量证明题和选择题. 本书可作为各类高等院校学生的学习参考书和教师的教学参考书,以及科技人员的工作参考书,也可作为各类专业考研生的复习资料。
本书共有4卷,作者是世界公认的分析学大师。这套4卷集的经典名著以广义函数论为框架,论述了与线性偏微分方程理论有关的经典分析和现代分析的核心内容。第2卷内容主要包括:微分方程解的存在性和近似性、微分方程解的内部正则性、柯西问题的混合边值问题、恒定强度的微分算子、散射理论、线性偏数方程的解析函数理论和卷积型方程等。
《高等代数探究性课题精编》包括43个高等代数探究性课题,这些课题背景丰富(素材取自于外有关资料),结论深刻有趣,题材涉及高等代数的方方面面,对各课题不过分强调技巧难度,都可以从不同层次进行探究。对每个课题都先简要阐明其背景、目的和意义,然后提出本课题的“中心问题”,让读者围绕某个中心问题自主探究。书中采用问题链的形式,给读者以启发、引导,帮助他们明晰探究思路。每个问题都附有详尽的解答,各课题中还设置探究题,以丰富探究性的层次。通过对课题的探究,可以让读者尝试数学研究的过程,获得数学创造的体验,提高不断深造的能力和创造能力,并拓宽知识视野,加深对数学本质的理解。
丛书(第6辑):代数多项式》介绍了怎样应用对称条件解方程组及不等式,所有这些问题的解答都使用基于对称多项式定理的公式。 《 丛书(第6辑):代数多项式》适合于准备参加竞赛的中学生、师范学院的学生和数学教师及数学爱好者阅读。
本书叙述了线性代数的基本概念、基本方法和基本定理。主要内容有行列式、矩阵、向量组的线性相关性,n维向量空间。线性方程组,特征值与特征向量,内积与二次型。全书共六章,约27万字。每章又分内容提要,疑难解析,例题分析,综合范例,自测题、答案与提示等。内容通俗易懂循序渐进。 本书适用于理工科和考研者复习线性代数之用。