本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
《偏微分方程理论与方法》(作者马天)是一部关于偏微分方程理论与方法的专著,本专著共有六章,章系统地介绍了经典的线性偏微分理论,第二章较详细地介绍了泛函分析的拓扑度理论,变分原理,线性算子半群理论及Banach空间上的动力系统理论,后四章主要是作者的工作,它们包括非线性椭圆及完全非线性椭圆边值问题存在性与正则性;退化椭圆及非负特征形式方程边值问题;非线性耗散型演化方程全局存在性及正则性;双曲型波方程及量子Hamilton系统以及耗散结构演化方程动力学,本书特点是强调数学的统一性、普适性以及简单性,同时也强调方程与自然的联系。 《偏微分方程理论与方法》适合于从事数学、物理、大气海洋物理等方面的科研、教学人员及研究生,高年级本科生学习与参考。