《原子核理论讲义(重排本)》是再版图书,按照1961年版本进行校订后重排录入。原书是根据九院于1960年夏天在成都举办的原子核物理讲习班的讲义编写而成。本书主要包括核力、核结构、核反应和核衰变等内容。对于上述内容,书中介绍了基本的理论处理方法和结果,并在一些部分把理论与实验的结果进行了比较和分析。
为了便于读者了解宇称不守恒思想突破的历史过程和科学文献,本书分三篇收录了相关文献。 篇收入了有关这一发现的重要理论和实验记录:李政道、杨振宁的论文《弱相互作用中宇称守恒质疑》,吴健雄和安布勒(E.Ambler)等的论文《β衰变中宇称守恒的实验检验》和布德(R.Budde)、克雷蒂安(M.Chretien)等的论文《1.3GeVπ-介子产生的不稳定重粒子的性质》。 第二篇收入的是,1986年11月22日在哥伦比亚大学物理系举行的“宇称不守恒发现30周年学术报告会”的有关历史文献。 第三篇主要为《李政道答(科学时报)记者问》、伯恩斯坦(J.Bernstein)的《宇称问题侧记》、富兰克林(A.Franklin)的《宇称不守恒的发现与未发现》等相关文献。
When I first decided to write a book on string theory, more than ten years ago, my memories of my student years were much more vivid than they are today. Still, I remember that one of the greatest pleasures was finding a text that made a difficult subject accessible, and I hoped to provide the same for string theory. Thus, my first purpose was to give a coherent introduction to string theory, based on the Polyakov path integral and conformal field theory. No previous knowledge of string theory is assumed. I do assume that the reader is familiar with the central ideas of general relativity, such as metrics and curvature, and with the ideas of quantum field theory through non- Abelian gauge symmetry. Originally a full course of quantum field theory was assumed as a prerequisite, but it became clear that many students were eager to learn string theory as soon as possible, and that others had taken courses on quantum field theory that did not emphasize the tools needed for string theory. I have therefore tri
This highly regarded text provides an up-to-date and prehensive introduction to modem particle physics. Extensively rewritten and updated, this fourth edition includes all the recent developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasized. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortings of this model and new physiceyond its pass (such as super symmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list. This is a text suitable for final-year physics un
《多粒子物理学(第3版)》自问世以来,一直是量子多体理论领域中最的著作之一。《多粒子物理学(第3版)》全面系统地讲解了格林函数方法在固态理论物理中的实际应用,给出了其在处理电子气、极化子、电子输运、光响应、超导和超流等实际问题时的具体过程,内容涵盖了固态多体理论中的很多高等论题,例如严格可解模型和强关联电子系统等。此次影印的是《多粒子物理学(第3版)》的第三版。作者对旧版中的若干章节进行了修订,介绍了许多新的研究成果,此外作者还新增了几个章节,例如不同的平均自由程,Hubbard模型、库仑阻塞和量子霍尔效应等。
When I first decided to write a book on string theory, more than ten years ago, my memories of my student years were much more vivid than they are today. Still, I remember that one of the greatest pleasures was finding a text that made a difficult subject accessible, and I hoped to provide the same for string theory. Thus, my first purpose was to give a coherent introduction to string theory, based on the Polyakov path integral and conformal field theory. No previous knowledge of string theory is assumed. I do assume that the reader is familiar with the central ideas of general relativity, such as metrics and curvature, and with the ideas of quantum field theory through non- Abelian gauge symmetry. Originally a full course of quantum field theory was assumed as a prerequisite, but it became clear that many students were eager to learn string theory as soon as possible, and that others had taken courses on quantum field theory that did not emphasize the tools needed for string theory. I have therefore tri
本书一共分三章:章负能谱和负能谱系统、第二章负能谱热力学理论纲要和第三章黑洞热力学。其中第二章是本书的中心内容,从节到第七节集中阐述并建立了负能谱热力学的五条基本定理和定律。第八节阐述了负能谱系统的稳定平衡判据。第九至十一节讨论了熵减原理的应用以及负能谱热力学在高密度自引力坍缩物质中的应用。最后在第十二节里概述了正、负能谱中非平衡态热力学间的互补对应。
依据通行的观点,物质的基本彻块是夸克与轻子,它们通过杨-米尔斯规范场的媒介相互作用(在这种场合下引力被忽略了)。这就意味着相互作用的形式是完全由某些内部对称群的代数结构所决定的。于是强相互作用是与SU(3)群相关联的,它是由叫做量子色动力学的规范场理论所描述的。而电一弱相互作用则是与SU(2)XU(1)群相关联的,现在它是由标准的温伯格-萨拉姆模型来描述的。本书简明地介绍了在这些思想背后的动力,以及由此而来的严谨的数学系统表述。
This highly regarded text provides an up-to-date and comprehensive introduction to modem particle physics. Extensively rewritten and updated, this fourth edition includes all the recent developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasized. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physiceyond its compass (such as super symmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list. This is a text suitable for final-year p
本书简述了中子与原子核相互作用的机制及相关理论模型,简要介绍了国际上几个的中子评价核数据库,如BROND-2(俄罗斯)、CENDL-2(中国)、ENDF- VI(美国)、JEF-2(欧共体)、JENDL-3(日本),提供了102个常用核素的中子核反应激发曲线。随书有-张,其中内容包括本图集的e版本和相关图形软件及其安装使用说明。读者除可直观查阅中子激发曲线图外,还可通过个人电脑直接显示本图集的相关内容,如截面曲线及所对应的能量-截面(E-x)值等。 本书可作为核反应理论、核数据评价及其应用、中子物理学、粒子输运计算和某些核技术应用研究方面的科研人员,以及大学有关专业高年级学生、研究生和教师的实用工具书。
《原子核结构》首先讲述了原子核的集体模型和壳模型的基本理论。对于液滴模型,Bohr哈密顿量及相关内容,球形和变形势中的单粒子态及其性质,壳修正和对修正等内容作了深入的物理讨论并对所涉及的数学公式都作了详细推导。着重讨论了核力的基本特征,介绍了常用的唯像核力并基于介子交换理论导出了介子交换势。特别对于原子核的高自旋态近年来的发展,远离稳定线原子核的结构等领域的近期进展都给出了深入讨论。
String theory is one of the most exciting and challenging areas of modern theoretical physics. It was developed in the late 1960s for the purpose of de-scribing the strong nuclear force. Problems were encountered that prevented this program from attaining plete success. In particular, it was realized that the dpectrum of a fundamental string contains an undesired massless spin-two particle. Quantum chromodynamics eventually proved to be the correct theory for describing the strong force and the properties of hadrons,New doors opened for string theory when in 1974 it was proposed to identify the massless spin-two particle in the string's spectrum with the graviton, the quantum of gravitation. String theory became then the most promising can-didate for a quantum theory of gravity unified with the other forces and has developed into one of the most fascinating the6ries of high-energy physics.
When I first decided to write a book on string theory, more than ten years ago, my memories of my student years were much more vivid than they are today. Still, I remember that one of the greatest pleasures was finding a text that made a difficult subject accessible, and I hoped to provide the same for string theory. Thus, my first purpose was to give a coherent introduction to string theory, based on the Polyakov path integral and conformal field theory. No previous knowledge of string theory is assumed. I do assume that the reader is familiar with the central ideas of general relativity, such as metrics and curvature, and with the ideas of quantum field theory through non- Abelian gauge symmetry. Originally a full course of quantum field theory was assumed as a prerequisite, but it became clear that many students were eager to learn string theory as soon as possible, and that others had taken courses on quantum field theory that did not emphasize the tools needed for string theory. I have therefore tri
Recent years have brought a revival of work on string theory, which haeen a source of fascination since its origins nearly twenty years ago.There seems to be a widely perceived need for a systematic, pedagogical exposition of the present state of knowledge about string theory. We hope that thiook will help to meet this need. To give a comprehensive account of such a vast topic as string theory would scarcely be possible,even in two volumes with the length to which these have grown. Indeed,we have had to omit many important subjects, while treating others only sketchily. String field theory is omitted entirely (though the subject of chapter 11 is closely related to light-cone string field theory). Conformal field theory is not developed systematically, though much of the background material needed to understand recent papers on this subject is presented in chapter 3 and elsewhere.
String theory is one of the most exciting and challenging areas of modern theoretical physics. It was developed in the late 1960s for the purpose of de-scribing the strong nuclear force. Problems were encountered that prevented this program from attaining complete success. In particular, it was realized that the dpectrum of a fundamental string contains an undesired massless spin-two particle. Quantum chromodynamics eventually proved to be the correct theory for describing the strong force and the properties of hadrons,New doors opened for string theory when in 1974 it was proposed to identify the massless spin-two particle in the string's spectrum with the graviton, the quantum of gravitation. String theory became then the most promising can-didate for a quantum theory of gravity unified with the other forces and has developed into one of the most fascinating the6ries of high-energy physics.
本书内容涵盖粒子物理基础、宇宙线的物理(加速、相互作用)和天文(起源、传播)问题及其探测方法。针对目前广为采用的大气簇射实验,本书侧重讨论了大气簇射中宇宙线各成分(包括强子、光子、μ子和中微子)的理论模型及数值模拟方法。书中的理论分析简明直观,密切结合实验,具有较强的针对性。读者通过本书可以对宇宙线这个学科有整体和适当深度的了解。本书适合作为物理学专业高年级本科生和研究生的入门教材。对粒子物理标准模型和天文学有基础性的了解有助于对本书的理解。本书亦适合工作在宇宙线领域的专家学者参考。
When I first decided to write a book on string theory, more than ten years ago, my memories of my student years were much more vivid than they are today. Still, I remember that one of the greatest pleasures was finding a text that made a difficult subject accessible, and I hoped to provide the same for string theory. Thus, my first purpose was to give a coherent introduction to string theory, based on the Polyakov path integral and conformal field theory. No previous knowledge of string theory is assumed. I do assume that the reader is familiar with the central ideas of general relativity, such as metrics and curvature, and with the ideas of quantum field theory through non- Abelian gauge symmetry. Originally a full course of quantum field theory was assumed as a prerequisite, but it became clear that many students were eager to learn string theory as soon as possible, and that others had taken courses on quantum field theory that did not emphasize the tools needed for string theory. I have therefore tri
本书系统地总结了冲击波压缩科学在力学、物理和化学方面的研究成果,从冲击波压缩的基本概念出发,讲述了冲击波压缩科学的起源、良性学说和灾变学说,冲击波压缩下固体的弹性、塑性、加载波和卸载波等力学响,应,固体的压电、铁电、铁磁、电阻率、电极化等物理性质,以及冲击波压缩下固体的活化、改性、化学合成等化学效应。本书从力学、物理和化学的多学科角度,阐述了固体的强度效应、局域变形、高浓度缺陷等特性在冲击波压缩过程中的意义,介绍了冲击波压缩科学的发展方向。 本书可作为力学、物理、化学、材料科学、地球和天体科学等专业高年级本科生和研究生的参考书,也可供动高压物理、爆炸与冲击动力学研究领域的科研人员参考使用,对国防、民用工程和新材料开发领域的工程技术人员有着重要的参考价值。