本书沿着一条简捷的途径,着重地介绍了代数K-理论在拓扑学、几何学、数论和算子代数中有重要应用的K0群、K1群及K2群的基本理论,K0群的三种等价定义,K1群和K2群的同调刻画,以及它们之间的正合列等,可将读者带到这一学科的前沿。同时还介绍了类数计算及K2群计算方面的一些基本结果及近十年来外学者得到一些新成果。全书自成体系,学过线性代数和近世代数的读者都可阅读。本书可作为数学系高年级学生及研究生的,也可供高校数学教师及数学研究人员阅读和参考。
《有限群论基础(第2版)》讲述有限群论的基本知识,以较少的篇幅完整地阐述了有限群论的基本概念及处理有限群的方法,并介绍了有限群表示的基本概念及常用的结论,具体内容包括:基本概念、正规子群、同态定理、置换群、置换表示、交换群,Sylow定理、可解群及有限群表示论初步。 《有限群论基础(第2版)》内容深入浅出,富有启发性,并配备较多的例子和习题,便于讲授和自学。 学习本书,不要求读者学习过抽象代数课程或阅读过相关的书籍,本书可用做高等院校有限群论课程的教材,也可供科技工作者作为自学资料或参考书。