李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《数论经典著作系列:解析数论基础》以解析数论的三个问题:素数分布、Goldbach问题和Waring问题为中心,很好地阐明了解析数论的三个重要方法:复积分法、圆法及三角和法本书的特点是少而精,叙述和证明简洁阅读本书仅需要初等数论、微积分及复变函数基础知识,书中有不少习题,其中一些是近代解析数论的最重要的成果,读者可通过这些习题了解近代解析数论的研究领域。本书可供大专院校数学系师生、研究生及有关的科学工作者阅读
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
本书讲述交换代数的基本理论和方法,在介绍经典的Noenther环和Dedekind整环理论的同时,重点突出了模与范畴以及局部化方法。这些内容都是学习代数几何和代数数论的公共代数基础,同时也为学习同调代数等其他数学学科打下基础。 学过近世代数课程的读者均可学习该教材。 本书可作为数学系研究生公共基础课教材和数学系高年级本科生选修课教材,也可供数学工作者参考。
《李群讲义》主要讲述李群的基本理论及其应用,目的就是试图将李群的精要及主要应用作一简明的介绍。全书共分六章。章介绍紧致群的线性表示论。第二章详细说明如何去实现李群结构的线性化和李代数在李群结构论上的基本重要性。第三章中研讨连通紧致李群的伴随变换群的轨几何,它是紧致李群的结构和分类理论的枢纽。第四章得出紧致李群的结构和分类理论(它是李群论的精要,也是在几何、分析领域中具有广泛应用的基础理论。)进而得出复半单李群或实半单李群的理论的推广。第五章用代数的观点,讨论复半单李代数的结构与分类。第六章则涉及实半单李代数的理论,特别是它与对称空间理论的联系。这将有利于读者进一步理解李群论,并使读者在李群理论的应用上得到某种启发。本书适用于数学专业研究生、高年级本科生阅读,也可供相关专业的
要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。 从出版方面来讲,除了较好较快地出版我们自己的成果外,引进国外的先进出版物无疑也是十分重要与必不可少的。从数学来说,施普林格(Springer)出版社至今仍然是世界上的出版社。科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。
在数学和抽象代数中,群论研究名为群的代数结构,群在抽象代数中具有基本的重要地位。《Galois定理与群论》从一个方程能用根式求解所必须满足的本质条件开始研究,讲述了伽罗华定理与群论知识。全书分为:普及篇、基础篇及提高篇三部分,详细叙述了群论这门数学学科的发展及众多数学家在群论方向的研究成果。
This book provides an introduction to abstract algebraic geometry using the methods of schemes and cohomology. The main objects of study are algebraic varieties in an affine or projective space over an algebraically closed field; these are introduced in Chapter I, to establish a number of basic concepts and examples. Then the methods of schemes and cohomology are developed in Chapters II and III, with emphasis on applications rather than excessive generality. The last two chapters of the book (IV and V) use these methods to study topics in the classical theory of algebraic curves and surfaces.
西格尔所著的《数》系统地介绍了数理论,内容分四章:章介绍了数论的一些古典结果;第二章专门讲述适合于齐次线性微分方程组的某些函数数值的代数无关性;第三章中证明了数ab的性,即著名的Hilbert第七问题;最后,第四章介绍了Schneider关于椭圆函数的算术性质方面的一些研究结果。 《数》适合于大学、中学师生及数学爱好者。
《代数》(第3版):As I see it, the graduate course in algebra must primarily prepare studentsto handle the algebra which they will meet in all of mathematics: topology,partial differential equations, differential geometry, algebraic geometry, analysis,and representation theory, not to speak of algebra itself and algebraic numbertheory with all its ramifications. Hence I have inserted throughout references topapers and books which have appeared during the last decades, to indicate someof the directions in which the algebraic foundations provided by thiook areused; I have acpanied these references with some motivating ments, toexplain how the topics of the present book fit into the mathematics that is toe subsequently in various fields; and I have also mentioned some unsolvedproblems of mathematics in algebra and number theory. The abc conjecture isperhaps the most spectacular of these.
斐波那契数列的理论是初等数学中困难而有趣的问题,它与“高深数学”的历史、问题和方法有紧密的联系。从有名的兔子问题开始几乎经历了八百年久远的岁月。迄今为止。斐波那契数列仍然是初等数学中最吸引人的一章。和斐波那契数列有关的问题在许多数学普及读物中都会出现,在学校的数学小组中常作为教材,在数学奥林匹克中也常被提及。 这本书包含的问题是列宁格勒国立大学1949—1950学年学生数学小组的某些学习材料。根据小组参加者的愿望,偏重于研究数论方面的内容;在本书中对于这些问题作了比较详尽的阐述。 在书中论及整除理论和连分数理论,阅读这些内容,不需要超出中学课程范围的预备知识。 本书适用于大学、中学师生。