三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《计算机数学基础 第3版》介绍线性代数和离散数学在计算机应用中所涉及的基本内容,全书共分6章,主要内容包括行列式、矩阵、线性方程组、集合论初步、图论和数理逻辑初步。书中概念论述清楚,讲解通俗易懂,着重于概念的应用。各章均配有习题并在附录中给出了习题参考答案,有助于读者加深对概念的理解。本书既可作为高职高专计算机专业课程的教材,也可供有关工程技术人员参考。
《 数学中的小问题大定理 丛书(第四辑):轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法.在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。 《 数学中的小问题大定理 丛书(第四辑):轨迹》可供中学数学教师参考,也可供中学生课外阅读。
本书是计算方法的入门教材,旨在通过一些基本的数值方法来探究数值算法设计的基本技术,诸如缩减技术、校正技术、松弛技术与二分技术等,《计算方法:算法设计及其MATLAB实现(第2版)》追求简约,数值算法的设计与分析尽量回避烦琐的数学演绎,《计算方法:算法设计及其MATLAB实现(第2版)》追求统一,所提供的算法设计技术囊括了快速算法与并行算法等高效算法的设计,《计算方法:算法设计及其MATLAB实现(第2版)》追求新奇,算法的设计机理扎根于博大精深的中华文化,讲授《计算方法:算法设计及其MATLAB实现(第2版)》的基本内容约需36-40课时。
本书是根据理工科数学 数值计算方法课程教学基本要求 ,为普通高校理工科各专业本科生和工科各专业硕士研究生编写的教材. 介绍了电子计算机上常用的数值计算方法以及有关的基本概念与基本理论,内容包括:非线性方程与线性方程组的数值解法、插值与逼近、数值积分与数值微分、常微分方程数值解法、矩阵的特征值与特征向量计算. 每章均配有一定量的习题,部分例题附有MATLAB源程序,一些算法给出了框图,书末附有部分习题参考答案. 本书叙述简明,注意深入浅出,言简意赅;淡化严格论证,削弱运算技巧;突出重点,循序渐进. 本书可作为普通高校理工科本科和工科硕士研究生各专业 数值计算方法 或 数值分析 教材,也可供从事科学与工程计算的科技工作者和研究人员参考.
本书是作者这几年在效率与生产率研究方面所做工作的总结,其内容结构分为如下几部分: 部分:“效率与生产率度量方法”方面前人没做过、我们创新的成果,如1、2。 第二部分:“效率与生产率度量方法”方面前人的成果、我们有所改进,如3、4、5、6、8。 第三部分:“效率与生产率度量方法”的评析与比较,如9、10、11。 第四部分:“效率与生产率度量方法”应用于计算“生产率”,如12、13。 第五部分:“效率与生产率度量方法”应用于“制造业”效率方面,如7、14、15、16、17、18、19。 第六部分:“效率与生产率度量方法”应用于“金融服务业”效率方面,如20、21、22、23。 本书中除“制造业相对效率的度量与比较”一文是与社科院经济所刘小玄研究员合作外,其余各章均是和我的研究生合作撰写。各章作者见文后。
本书的目的主要是向读者展示傅里叶分析和小波的许多基础知识以及在信号分析方面的应用。全书分为8章和2个附录,前言部分是学习第1章至第7章的准备知识,即内积空间;第1章讲解傅里叶系列的基础知识;第2章讲解傅里叶变换;第3章介绍离散傅里叶变换以及快速傅里叶变换;第4章至第7章讨论小波,重点在于正交小波的构建;附录部分则介绍稍微复杂的一些技术主题以及演示概念或产生图形的MATLAB代码。 小波分析的应用领域十分广泛,包括:数字领域的许多学科:信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地质勘探数据处理;大型机械的故障诊断等方面。 许多关于小波的文章和参考书籍均要求读者具有复杂的数学背景知识,本书则只要求学生具有较好的微积
本书系统地介绍了数值计算的基本概念、常用算法及有关的理论分析和应用。全书共分10章。第1章是绪论,介绍数值分析中的基本概念;第2~9章包含了数值计算中的基本问题,如线性方程组的数值解法、矩阵特征值和特征向量的数值解法、非线性方程及方程组的数值解法、插值方法、数据拟合和函数逼近、数值积分、数值微分以及常微分方程初值问题的数值解法等;第10章介绍了Matlab软件,并介绍了如何将之应用于数值分析的基本问题计算。读者可将其中的算法和命令用于数值实验和工程计算实践中去。各章都给出典型例题并配有一定数量的习题,书后给出了习题答案或提示。 本书可作为理工科大学工程硕士研究生的“数值分析”课教材,还可作为大学本科及硕士生的学习参考书,同时也可供工程技术人员参考使用。
本书是国防工业出版社出版的教材《数值计算方法》的配套用书,內容分为数值计算方法概论、非线性方程的数值解法、线性方程组的直接法、线性方程组的迭代法、插值法与小二乘拟合法、数值积分与数值微分、常微分方程的数值解法、矩阵特征值与特征向量的计算等8章.每章由内容提要、例题分析、习题选解、综合练习和实验指导五个部分组成,在附录中给出了综合练习题目的解答,并给出了五套模拟试卷及参考答案. 本书可作为普通本科院校理工科专业学生学习数值分析或计算方法课程的参考教材,也可供从事科学与工程计算的科技人员学习,对备考研究生的读者也颇有参考价值。
本书共十二章,包括绪论、预备知识、杆系结构有限元、弹性力学平面问题有限元、空间问题与轴对称、板壳分析初步、板壳有限元分析(续)、弹性力学广义变分原理及其有有限元中的应用、有限元动力分析、非线性有限元初步与材料非线性分析、弹性稳定性与几何非线性分析和其他数值方法(含加权余量、半解析、样条有限元和边界单元法)。前六章供本科高年级学生学习有限单元法用,并可供硕士研究生和部分专业博士生选用。本书取材适宜,由浅入深,内容丰富,引入了不少新内容和科研成果;论述严谨、细致,便于学习;较重视原理与方法的论证,但也有足够的算例,几乎章章都有配书教学软件,便于应用和编程参考。 本书可作为土木、交通、水利和工程力学等专业的本科、硕士研究生教材,也可供有关工程技术人员参考。
前言 第1章 绪论 1 1.1 计算方法的研究对象与特点 1 1.2 误差 3 1.2.1 *误差与*误差限 3 1.2.2 相对误差与相对误差限 3 1.2.3 有效数字 3 1.2.4 误差的传播 4 1.3 数值计算中应注意的一些原则 6 1.4 MATLAB解题示例 8 习题1 10 实验1 11 第2章 插值法 12 2.1 插值多项式定义 12 2.2 插值多项式的存在性与余项 13 2.3 拉格朗日插值多项式 14 2.4 牛顿插值多项式 16 2.4.1 差商的概念 16 2.4.2 差商性质 17 2.4.3 牛顿插值多项式及余项 18 2.5 埃尔米特插值多项式 20 2.5.1 埃尔米特插值多项式定义 20 2.5.2 埃尔米特插值多项式的构造 20 2.5.3 埃尔米特插值多项式的性 21 2.5.4 余项 21 2.6 分段线性插值 23 2.6.1 龙格现象 23 2.6.2 分段线性插值 24 2.7 三次样条插值 25 2.7.1 三次样条插值函数的定义 25 2.7.2 确定三次样条插值函数的条件分析 25 2.7.3 三次样条插值函数的构建 25 2.7.4 三次样条插值函数的误差界与收敛性 27 2.8 MATLA
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
三角等式证题法》以统编教学大纲为基础,以三角恒等式证明为例,比较深入细致讨论了解题的正确思路、方法及技巧。《三角等式证题法》对三角计算题的解法也进行了深入分析,指出了正确的解题思路。《三角等式证题法》适用中学生、知识青年自学,也可供中学数学教师参阅。
本书主要介绍了一般的有限元基本理论和有限元计算技术,以及在弹性力学、结构动力学、流体运动、传质与传热等问题中的有限元分析方法和典型应用;介绍了非线性有限元分析方法,包括材料非线性、接触非线性、大变形大应变和结构非线性等方面的有限元理论内容;还介绍了其他一些与有限元方法相关的现代数值计算方法。另外,书中突出了有限元方法的计算技术,如在MATLAB下的编程方法;介绍了多种工程应用的实例和研究结果。 本书内容精练,以工程中的问题类型为脉络介绍有限元的应用,以机械工程、土木工程等工科相关专业本科生、研究生为读者对象,亦可供从事数值分析的工程技术人员参考。
《数值计算方法与应用》详细介绍了科学计算领域中常用的数值计算方法,主要内容包括插值与逼近、数值积分与数值微分、非线性方程及非线性方程组的数值计算方法、线性方程组的数值计算方法、常微分方程初值问题的数值计算方法等。《数值计算方法与应用》不仅系统介绍了求解各类数学问题的*基本的数值计算方法和相关基础理论,而且补充和新增了相应的优化计算方法。为了方便教学,作者给出了相关实例的MATLAB源程序,便于师生上机练习。《数值计算方法与应用》的**特色是以提出问题-分析问题-解决问题为主线,先有问题背景后有解决问题的模型、算法和程序设计的教学和教材体系,体系严密,系统性强。除第2章外每章给出典型例子和一定数量的习题,并在书后给出了习题解答。