本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书系统地阐述有限单元法的基本原理、数值方法、计算机程序设计技术及其应用。全书共12章,内容包括有限元法预备知识——加权余量法、杆系结构问题、弹性平面问题、弹性空间问题、热传导问题、流体力学问题、动力学问题、板壳结构问题等,重点是有限元法的基本原理和数学公式表达的建立,以及单元插值函数的构造。后以一个线弹性静力学教学程序FEMED为例介绍有限元程序设计,使读者初步掌握有限元编程的基本方法并具备通用程序开发能力。 本书的特点是由浅入深,简明易懂。书中精选了大量例题,通过这些例题,学生可以逐步掌握有限元法的基本理论和方法,特别适合于教学学时偏少的情况。 本书可作为高等院校力学、机械、土木、水利、航空航天等专业本科生和研究生的教材,也可作为其他相关专业科技人员的参考书。
前言 第1章 绪论 1 1.1 计算方法的研究对象与特点 1 1.2 误差 3 1.2.1 *误差与*误差限 3 1.2.2 相对误差与相对误差限 3 1.2.3 有效数字 3 1.2.4 误差的传播 4 1.3 数值计算中应注意的一些原则 6 1.4 MATLAB解题示例 8 习题1 10 实验1 11 第2章 插值法 12 2.1 插值多项式定义 12 2.2 插值多项式的存在性与余项 13 2.3 拉格朗日插值多项式 14 2.4 牛顿插值多项式 16 2.4.1 差商的概念 16 2.4.2 差商性质 17 2.4.3 牛顿插值多项式及余项 18 2.5 埃尔米特插值多项式 20 2.5.1 埃尔米特插值多项式定义 20 2.5.2 埃尔米特插值多项式的构造 20 2.5.3 埃尔米特插值多项式的性 21 2.5.4 余项 21 2.6 分段线性插值 23 2.6.1 龙格现象 23 2.6.2 分段线性插值 24 2.7 三次样条插值 25 2.7.1 三次样条插值函数的定义 25 2.7.2 确定三次样条插值函数的条件分析 25 2.7.3 三次样条插值函数的构建 25 2.7.4 三次样条插值函数的误差界与收敛性 27 2.8 MATLA
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
本书共十二章,包括绪论、预备知识、杆系结构有限元、弹性力学平面问题有限元、空间问题与轴对称、板壳分析初步、板壳有限元分析(续)、弹性力学广义变分原理及其有有限元中的应用、有限元动力分析、非线性有限元初步与材料非线性分析、弹性稳定性与几何非线性分析和其他数值方法(含加权余量、半解析、样条有限元和边界单元法)。前六章供本科高年级学生学习有限单元法用,并可供硕士研究生和部分专业博士生选用。本书取材适宜,由浅入深,内容丰富,引入了不少新内容和科研成果;论述严谨、细致,便于学习;较重视原理与方法的论证,但也有足够的算例,几乎章章都有配书教学软件,便于应用和编程参考。 本书可作为土木、交通、水利和工程力学等专业的本科、硕士研究生教材,也可供有关工程技术人员参考。
本书着重推介一种有别于Brun筛法和Selberg筛法的新型优化筛法。其特点是简单易懂、便于操作、适用性广。 作为该优化筛法的应用实例,书中对至今用其他方法尚未解决的14个数化问题逐个进行了论证。同时,对每个命题都给出了具体的求解方法,运算程序及实筛数据。书末附有20万以内的素灵敏表用于数据查验。 本书可供相关专业的教学与科研工作者阅读,亦可供大学数理系高年级学生、研究生参考。
《数值计算方法与应用》详细介绍了科学计算领域中常用的数值计算方法,主要内容包括插值与逼近、数值积分与数值微分、非线性方程及非线性方程组的数值计算方法、线性方程组的数值计算方法、常微分方程初值问题的数值计算方法等。《数值计算方法与应用》不仅系统介绍了求解各类数学问题的*基本的数值计算方法和相关基础理论,而且补充和新增了相应的优化计算方法。为了方便教学,作者给出了相关实例的MATLAB源程序,便于师生上机练习。《数值计算方法与应用》的**特色是以提出问题-分析问题-解决问题为主线,先有问题背景后有解决问题的模型、算法和程序设计的教学和教材体系,体系严密,系统性强。除第2章外每章给出典型例子和一定数量的习题,并在书后给出了习题解答。
有限元法是工程实际中强有力的数值分析方法之一。美国MSC公司研制的MSC.Marc软件是众多有限元通用软件中的杰出代表。本书把有限元理论和MARC实现有机地结合起来,使读者能深入体验有限元理论与MARC软件之间的紧密关联。学习本书不仅可以循序渐进地掌握有限元基本理论,而且可以培养应用MARC软件解决工程实际问题的能力。全书共分8章,第1章介绍有限元的基本知识,第2章介绍MARC软件的基本用法,第3章至第8章分别介绍平面问题、空间问题、空间轴对称问题、杆系结构、板壳问题以及结构动力问题的有限元法,第3章至第8章每章均有用MARC求解相应工程问题的实例。本书特别适合用力学、机械、土木、水利等领域的科技工作者使用MARC软件的工具和参考书,也可作为理工科院校有关专业高年级本科生、研究生及教师学习有限元理论与MARC软件的教材或参考书。
本书是计算方法的入门教材,旨在通过一些基本的数值方法来探究数值算法设计的基本技术,诸如缩减技术、校正技术、松弛技术与二分技术等,《计算方法:算法设计及其MATLAB实现(第2版)》追求简约,数值算法的设计与分析尽量回避烦琐的数学演绎,《计算方法:算法设计及其MATLAB实现(第2版)》追求统一,所提供的算法设计技术囊括了快速算法与并行算法等高效算法的设计,《计算方法:算法设计及其MATLAB实现(第2版)》追求新奇,算法的设计机理扎根于博大精深的中华文化,讲授《计算方法:算法设计及其MATLAB实现(第2版)》的基本内容约需36-40课时。
本书涵盖了数学建模初步、差分方程、插值与数值积分、常微分方程、线性代数方程组、非线性方程与方程组、无约束优化、约束优化、整数规划、数据统计分析、统计推断、回归分析等基本而重要的建模门类。各章的前部,是数学软件MATLAB/LINDO/LINGO的常用基本命令的演示,后部则是一些典型的建模案例,每个实验又区分难易,较简单的实验,以程序为单一主体;较复杂的,则设置模型问题、建模求解、程序设计、结果说明等段落,清晰演示一个数学模型从问题提出、模型假设到建模求解、编程实现的全过程,使得学生对基本命令有例可查,对典型方法有法可依。本书适合大学理工、人文、经管、医学、农学等各院系各专业的师生阅读和练习,只需具备若干基本的微积分、线性代数、概率统计、很优化的常识,以及推荐的安装有MATLAB/LINDO/LINGO等数学
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本书是常微分方程基础理论、基本方法和数学软件的系统应用相结合的教材。 它保持了当前通用教材中理论系统相对完整,方法与技巧多样化的特点,突出了从问题出发引导、发现解决问题的途径,进而导出重要的概念、命题、定理和解题方法的过程,体现了“诱导发现法”的教学思想方法。 采用了求解常系数齐次线性方程组的B.Van Rootselaar方法,计算机的实现充分表现了它较其他方法的显著优越性。 本书用详尽的实例较系统地介绍了在Maple与MATLAB两个数学软件平台中实现基础理论与基本方法的基本知识,本着学以致用的原则,简单介绍了求数值解的基本原理与方法及其计算机的实现,用生动的实例让读者了解微分方程数学建模的方法,并通过求解析解与数值解实现解决应用问题的大致过程。 本书可以作为数学、应用数学、计算数学、信息与计算科学等专业的
本书共分十章,内容包括MATLAB软件介绍、线性方程组的数值方法、函数的数值逼近、数值积分、微分方程问题的数值计算、非线性方程、矩阵特征值问题和*化问题等。其中前八章是数值计算引论的基本内容,所以配有完整的习题;后两章是介绍性的,它们分别导引后续课程“*化方法”和“微分方程数值方法”。
本书共分三卷,其内容环环相扣,自成一统。 上卷《数值算法设计》力图突破传统的计算方法学的学科体系,从一种统一的观点来阐述数值算法设计的原则、思想和方法。 上卷共分五章。前三章介绍常规算法的设计技术,即所谓缩减技术、校正技术和松弛技术。后两章分别介绍快速算法设计与并行算法设计的二分技术。二分技术是高效算法的设计技术。 本书中卷《二分演化技术》是二分技术的进一步展开,其内容侧重于同步并行算法的设计与分析,所考察的计算模型有叠加计算、一阶线性递推、三角方程组与三对角方程组等。中卷后一章介绍了快速Fourier变换FFT。 FFT是优秀算法的典范。 同FFT比较,快速Walsh变换更为精彩。本书下卷《Walsh演化分析》着重考察了Walsh函数与Walsh变换的演化机制。为刻画Walsh函数系的排序方式,作为铺垫,下卷的第
本书是《数值计算方法》的配套教材,内容包括数值计算引论、非线性方程的数值解法、线性代数方程组的数值解法、插值法、曲线拟合的*小二乘法、数值积分和数值微分、常微分方程初值问题的数值解法和试题及解答等8章。前7章每章均由内容提要、习题及解答、同步练习题及解答三部分组成,*后一章给出了3份试题样卷及解答。本书可作为高等学校理工科各专业本科生学习数值分析或计算方法的配套教材或参考书。
本书详细介绍了常用的数值计算方法,分上、下两册。上册包括误差分析初步,函数插值逼近,数值积分,解非线性方程的数值方法,解线性方程组的直接方法。下册包括解线性方程组的迭代法,线性小二乘问题,数据拟合,矩阵特征值问题,解非线性方程组的数值方法,常微分方程初值问题和边值问题的数值解法,函数逼近等。本书内容丰富,并且绝大多数算法用伪程序给出,强调数值方法在计算机上的实现。
本教材是美国华盛顿州立大学David V.Hutton教授为大学本科生编写的教材。为了更适于中国学生学习,根据中国教学内容结构和专业学习要求,我们对本书进行了缩编。 缩编后的内容包括:有限元的基本概念;刚度矩阵.弹簧与杆单元;桁架结构:直接刚度法;弯曲单元;加权余量法:一般单元列式的插值函数:在固体力学中的应用;结构动力学;共8章及3个附录部分。同时给出了目录的中文翻译和英汉对照词汇表。 本教材适用于土木工程、工程力学及机械工程等专业,也可作为工程技术人员的参考书。
本书是一本全面讲述数值计算方法的教材。全书共分七章,内容包括数值方法的研究及误差分析、非线性方程的数值解、线性方程组的直接方法和迭代方法、函数逼近的插值与曲线拟合法、数值积分与数值微分、常微分方程初值问题与边值问题的数值解、矩阵特征值与特征向量的数值解等。本书将科学计算工具软件——MATLAB与数值计算方法有机地结合,给出了常用经典算法的MATLAB程序代码和算例,从而达到培养学生科学计算的能力。为使读者快速掌握MATLAB的实用技术,本书附录给出了MATLAB入门。本书概念清晰,理论分析严谨,语言叙述通俗易懂,并注重实用性,所有的算法均配有伪程序、MATLAB代码。各章末都附有一定数量的习题,以供读者学习时进行练习。 本书可作为高等院校十箅机应用专业等非数学专业理工科本科生的教材,以及工科研究生的参考教材,
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。本书在南京大学数学系和计算机科学系作为教材。 本书可作为高校数学系、计算机系教材;也可供工程技术人员参考。