每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
本书介绍了多元统计分析的方法和理论,以及R语言计算,涵盖了经典多元统计分析的全部内容,包括:矩阵运算知识、数据可视化与R语言、多元正态分布、多元正态总体的抽样分布、多元正态分布的参数估计、置信域和假设检验、线性回归模型、多元多重回归分析、主成分分析、因子分析、判别分析、聚类分析和典型相关分析等内容,以及R语言的应用。本书除了重点介绍各种多元统计分析的思想、方法和理论外,使用R语言进行计算和数据可视化也是本书的特色,对书中所有的多元统计分析方法和理论都给出了R语言程序和应用,有大量翔实的应用案例可供参考,并配有相当数量的习题可供练习。 本书取材新颖、内容丰富、阐述严谨、推导详尽、重点突出、思路清晰、深入浅出、富有启发性,便于教学与自学。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
本书对江苏省专转本选拔考试高等数学从2002年至今共20套真题卷(删去了向量与空间解析几何相关考题)进行了详细解答,同时对每一道题目所涉及的知识点及解题技巧、解题方式进行了归纳与提升。一些重要的概念及公式在书中多次出现,目的是让学生加强理解,反复记忆。全书覆盖了专转本高等数学学科除线性代数内容外的全部知识点,通过本书的学习,学生们可以快速把握理解考试的重点、难点,掌握相关题型的解题思路与方法。 本书可作为参加江苏省专转本选拔考试考生的复习辅导用书,也可作为高等职业院校相关老师的教学参考用书以及学生的学习参考用书。
本书是贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”的要求精神,按照国家非数学类专业数学基础课程教学指导委员会*提出的“丁科类本科数学基础课程教学基本要求”,并根据高等学校培养高级应用型人才的目标编写而成的。全书分为上、下两册。上册分七章,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、微分方程。下册分五章,内容包括空间解析几何与向量代数、多元函数微分及其应用、重积分、曲线积分与曲面积分和无穷级数。 本书在内容上力求适用、够用、简明、通俗;在例题选择上力求全面、典型,难度循序渐进;在论述形式上则力求详尽、易懂。每节后都附有比较全面的基础性习题与综合性习题。为满足读者进行阶段性复习与自我检测的需要,在每一章末安排有自测题。书后附有
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
本书是高职高专各专业通用的高等数学基础课程教材。全书共分12章,包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用、常微分方程、空间解析几何与向量代数、多元函数的微分学、多元函数的积分学、无穷级数、数学软件等内容。书中每章都有学习目标和小结,每节都配有习题,每章都配有复习题,书后附有习题和复习题答案。本书中有“*”的部分内容供教师选用。 本书坚持“以应用为目的,以必需够用为度”的原则,在不破坏数学内容系统的前提下,充分考虑到高职高专教育特点和目前的教学实际,由浅人深、循序渐进,删除了许多繁琐的理论推导和证明,从而使本书显得更通俗易懂,简明扼要。
本书按照工科及经济管理类 本科数学基础课程(线性代数部分)教学基本要求 ,并结合当前大多数高等院校的学生基础和教学特点编写而成.全书以通俗易懂的语言,全面而系统地讲解线性代数的基本知识,包括行列式、矩阵、向量与线性方程组、矩阵的特征值与相似对角化、二次型、线性空间与线性变换等六章内容.每章分若干节,每节都配有习题,同时每章还配有综合习题,书末附有习题和综合习题的参考答案. 本书理论系统、举例丰富、讲解透彻、难度适宜,适合作为普通高等院校工科类、理科类(非数学专业)、经济管理类有关专业 线性代数 课程的教材使用,也可供广大考研学子选作复习线性代数的教材,还可供相关专业人员和广大教师参考.
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用.书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到了事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
《高等数学(第2版)(套装上下册)》是以*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收编者们多年来教学实践与教学改革成果编写而成的。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》分为上、下册.上册含函数与极限、导数与微分、微分中值定理与导数应用、不定积分、定积分及其应用、微分方程等内容,下册含向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数等内容.每节均配有习题,每章配有综合练习题,书末附有习题参考答案,便于教与学。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》可供高等本专科院校工科各专业使用,也可供其他专业参考。
本版《高等数学》上下册系高等工业院校的本科高等数学少学时使用的教材,是在天津大学历年高等数学版本的基础上,重新组织编写的。全书参照高等工业学校《高等数学课程教学基本要求》,结合教学实际,并参考了报考硕士研究生数学入学考试(数学二)内容的要求(本书涉及的内容超出了数学二的要求)而编写的。 该书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分和微分方程等7章;下册包括矢量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分和级数等5章。
《高等数学》是根据“高等数学课程教学基本要求”,结合编者多年从事高等数学教学积累的经验编写而成的。全书分为上、下两册。上册研究一元函数的微积分,主要包括函数的极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用以及常微分方程。下册研究多元函数,主要包括向量代数与空间解析几何、多元函数的微分学、重积分、曲线积分和曲面积分、无穷级数以及数学实验。《高等数学(下册)》叙述直观,概念清晰,通俗易懂,便于学生理解和掌握,合理配置了适量的例题和习题,应用问题贴近生活实际,基本涵盖了工科类本科“高等数学”课程基本要求的内容,读者可根据具体情况适当取舍。 《高等数学(下册)》可作为高等工科院校的“高等数学”课程教材,也可供相关教师、工程技术人员参考。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
本书内容根据我国普通高校本科生《高等数学课程基础要求》和*《全国硕士研究生入学统一考试数学考试大纲》高等数学部分,按照同济大学应用数学系主编的《高等数学》第五版章节顺序编写。 书中的每节由“考纲要求”、“内容提要”和“典型例题解析”三部分组成。在“考纲要求”中,列出了教学大纲和考研大纲对基本概念、基本理论和基本方法提出的要求;在“内容提要”中,对本节的知识点进行了系统梳理;在“典型例题解析”中,所选题目绝大部分来源于历年考研真题,并且对这些题目进行了分类,从而更加有利于学生的学习。
李广全主编的《高等数学》是按照新形势下教学改革的精神,依据天津市成人高等本科教育(专升本)“高等数学”课程的教学基本要求编写而成的。内容包括一元函数微积分概述、多元函数微分学、多元函数积分学、曲线积分与曲面积分、常微分方程、级数。 《高等数学》论述清晰,通俗易懂,书中结合实际给出大量的例题和习题,强化了数学的应用。书中结合数学软件“MatIlematica”开设了数学实验,为课程的学习提供了简单实用的工具,体现了时代的气息。为了适应成人教育的特征,帮助学生更好地学习和理解知识,教材配有同步练习册及助学光盘。助学光盘中包含各章的知识内容提要、各实验的操作演示录屏、教材和练习册的习题参考解答。 本书适合成人高等本科教育(专升本)工科各专业学生学习“高等数学”课程使用,也可作为其他类型本科学
本书分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、二重积分和三重积分、曲线积分与曲面积分、空间解析几何、级数、微分方程等九个专题,每个专题又含 基本概念和内容提要 竞赛题解析 练习题 三个部分。书中竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。另外,从近几年的硕士研究生入学考试试题中也挑选了部分好题,丰富了本书的内涵。
本书是《高等数学》(上、下册)(刘春风主编,科学出版社,2008年)的配套学习指导教材。本书分上、下两册,上册内容为一元函数微积分和空间解析几何与向量代数(共七章),下册内容为多元函数微积分、级数和常微分方程(共五章)。书末附有《高等数学》考研大纲、Math—ematica简介和自测题答案与提示。 本书结构严谨、逻辑清晰;强调方法阐述、力求通俗易懂、由浅人深、富于启发、宜于自学;其中适度嵌入了与“高等数学”相关的数学实验,旨在提高读者应用“高等数学”解决实际问题的能力。 本书可作为高等工科院校工学、经济学等各专业“高等数学”的辅导教材,也可作为相关教师、工程技术人员用书和参考书。
《大学生数学竞赛讲义》是以微积分核心内容为基础且兼顾大学生数学竞赛的辅导材料,其特点是激发兴趣、培养思想、传播数学文化、提高能力。《大学生数学竞赛讲义》由极限与连续、一元函数微积分、级数与广义积分、多元函数微积分、综合训练题五部分内容组成,通过例题背景及数学家故事等形式提高可读性,增加读者对微积分思想的领悟和认识。 《大学生数学竞赛讲义》可供非数学专业的本科生提高高等数学水平和参加各类数学竞赛之用。