《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
戴嘉尊编著的《微分方程数值解法(第2版21世纪高等学校)》包括常微分方程数值解法、抛物型方程的差分方法、椭圆型方程的差分方法、双曲型方程的差分方法、非线性双曲型守恒律方程的差分方法、有限元法简介等共6章,每章后面附有数量的习题供练习之用。《微分方程数值解法(第2版21世纪高等学校)》适合于数学类本科生“微分方程数值解法”课程教学之用,也适用于工科研究生及计算数学与应用数学教学与科研人员,并可供有关工程技术人员参考。
本书在读者已有微积分学和线性代数等基础知识的基础上比较详细地介绍了泛函分析的基础理论及其应用,包括kbesgue测度与Lebesgue积分的理论基础;度量空间的基本概念;赋范线性空间和Banach空间的基本概念;Banach空间的基本理论;不动点定理及其应用;内积空间和Hilbert空间的基本概念和基本理论;线性算子谱理论基础;非线性算子的理论基础和Banach空间中的微积分学;上下解方法及其应用和拓扑度理论及其应用。本书适合高等院校数学类专业(包括军事院校数学类合训专业)高年级学生和理工专业硕士/博士研究生学习和研究之用,也可供高校教师教学和科研参考。
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS 以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
《复变函数简明教程》是为高等院校数学各专业“复变函数”课程编写的教材。它的先修课程是数学分析或高等数学。本书共分八章,内容包括:复平面,扩充复平面,解析函数,分式线性变换,cauchy定理,cauchy公式,幂级数,大模原理,Schwarz引理,Laurent级数,留数及其应用,调和函数,解析开拓,Riemann存在定理等。《复变函数简明教程》在选材上注重少而精,突出了复变量与实变量之间的关系、级数和积分表示方法,使之尽可能地满足数学各专业的需求,并充分地反映了复变函数的核心内容;在内容的处理上,体现了实分析与复分析的相同与不同之处,既注重定理的严格证明,又充分考虑了读者学习高等数学时的不同背景;在内容安排上,由浅入深、循序渐进、深入浅出,便于教学与自学;在叙述表达上,力求严谨精炼、清晰易读。为拓广所学知识,《复
本书主要介绍图像偏微分方程的数值解法。介绍了轮廓线匹配算法、图像匹配算法和基于扩散方程的保边界降噪声算法。最后还介绍了近年发展较快的水平集法。本书解说精辟、推理严密、叙述简洁。 本书可供大专院校图像处理和模式识别专业师生作教材使用,也可供相关专业人士在科研中作参考。
本书在读者已有微积分学和线性代数等基础知识的基础上比较详细地介绍了泛函分析的基础理论及其应用,包括kbesgue测度与Lebesgue积分的理论基础;度量空间的基本概念;赋范线性空间和Banach空间的基本概念;Banach空间的基本理论;不动点定理及其应用;内积空间和Hilbert空间的基本概念和基本理论;线性算子谱理论基础;非线性算子的理论基础和Banach空间中的微积分学;上下解方法及其应用和拓扑度理论及其应用。本书适合高等院校数学类专业(包括军事院校数学类合训专业)高年级学生和理工专业硕士/博士研究生学习和研究之用,也可供高校教师教学和科研参考。
本书是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法和力学中的变分原理及其应用。其中一部分内容是作者多年来的研究成果,特别是提出了完全泛函的极值函数定理,统一了变分法中的各种欧拉方程。本书也可供有关专业的教师和科技人员参考。 本书概念清楚,逻辑清晰,内容丰富,深入浅出,便于自学,既注重方法的介绍,又不失数学的系统性、科学性和严谨性。书中列有大量例题和习题,并附有中英文索引。为了帮助