《中外物理学精品书系·经典系列5:特殊函数概论》较系统地讲述一些主要的特殊函数,如Г函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等,同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《中外物理学精品书系·经典系列5:特殊函数概论》正文的补充. 《中外物理学精品书系·经典系列5:特殊函数概论》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用.
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
当今科学家收集曲线样本及其他函数观测值,这本专著论述这类数据分析的思想和技巧,主要内容包括经典的线性回归方法、主成分分析、线性建模、典型相关分析及特殊的泛函技巧,如曲线注册和主微分分析。 本书始终利用来源于实际应用的数据,介绍方法的动机并举例论证,特别通过讨论数据生成过程的光滑性,说明如何通过泛函方法来发现数据的新特点;这些数据主要来源于增长分析、气象学、生物力学、马类科学、经济学及医学等领域的应用。本书论述新颖的统计技术,同时使其中的数学论证能被大多数人所理解。 本书许多内容都基于作者自己的工作,某些内容是首次出版。本书适合学生、应用数据分析学者及科研人员阅读,对统计学及其他广阔领域的研究也颇有价值。 本书作者Jim Ramsay是McGill大学的心理学教授,加拿大统计学会主席,多元分析等诸多
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭代法简介等。
本书讨论大规模连续空间的强化学习理论及方法,重点介绍使用函数逼近的强化学习和动态规划方法。该研究已成为近年来计算机科学与技术领域中活跃的研究分支之一。全书共分6章。第1章为概述;第2章为动态规划与强化学习介绍;第3章为大规模连续空间中的动态规划与强化学习;第4章为基于模糊表示的近似值迭代;第5章为用于在线学习和连续动作控制的近似策略迭代;第6章为基于交叉熵基函数优化的近似策略搜索。本书可以作为理工科高等院校计算机专业和自动控制专业研究生的教材,也可以作为相关领域科技工作者和工程技术人员的参考书。
本书是一本经典著作,由论点集、极限之概念、函数、距离及联结、容量及可测性、线性体系、可测函数、定积分、不定积分及加性全连续集合函数、单变数函数、多变数函数共11章内容构成,本书译笔带有文言文遗风,读之别有风味。《实变函数论》可作为大学数学专业教师和学生教学学习用书,也可作为数学爱好者的兴趣读物。
本书作者擅长写教科书,以选材仔细、论述清晰、实例丰富著称。本书是一部代理科研究生使用的泛函分析教材,读者只需具备积分和测度论的知识即可阅读。全书充分体现了作者的著书风格,以实例先行,从具体到一般,从浅入深,并配有许多精心挑选的例题和习题。
本书是作者近年来研究工作的总结。在介绍拓扑度理论的基础上,分别对二阶非线性微分方程边值问题,带p-Laplace算子的二阶方程边值问题,周期边值问题和高阶微分方程边值问题,给出了有解性、多解性及解得性的判断依据,展示了各类问题的研究技巧和方法。 本书适用于大学数学专业高年级学生、研究生、教师及对本方向有兴趣的研究人员。
本书是一本学习差分方程的本科生教程。书中将差分方程的经典方法和现代方法有机结合,包括了*权威的一手材料,并且在表述上足够简洁明了,适合高年级的本科生和研究生使用。本书是第三版,这版中包括了更多的证明,图表和应用,增加了许多新的内容,如,讲述高阶尺度差分方程的一章;有关一维映射的局部稳定性和全局稳定性的内容;介绍解的渐进思想的一节;levin-may定理的详细证明以及lapflour-beetle模型的*结果。 读者对象:数学专业的本科生,研究生和相关的科研人员。
中国科学院数学与系统科学研究院展兴数学中心于2009年5月至2009年12月举办了题为“非线性偏微分方程中的分析”主题研讨班。林芳华等编著的《非线性偏微分方程分析讲义(第2卷)》收集了其中7篇讲义,包括ChongstlengCao和Jiatlong Wu教授关于不可压缩磁流体方程的整体正则性理论,Jean-ClaudeSaut教授有关内波的渐进模型,以及Vsevolod.A.Solonnikov教授关于均匀旋转的粘性不可压缩自引力液体的稳定性理论等等。这些讲义在一定程度上反映了近年来在流体力学的相关数学理论方面的一些进展。《非线性偏微分方程分析讲义(第2卷)》可以作为从事非线性偏微分方程、特别是流体力学方程研究的科研人员和教师的学习和参考用书。
当今科学家收集曲线样本及其他函数观测值,这本专著论述这类数据分析的思想和技巧,主要内容包括经典的线性回归方法、主成分分析、线性建模、典型相关分析及特殊的泛函技巧,如曲线注册和主微分分析。 本书始终利用来源于实际应用的数据,介绍方法的动机并举例论证,特别通过讨论数据生成过程的光滑性,说明如何通过泛函方法来发现数据的新特点;这些数据主要来源于增长分析、气象学、生物力学、马类科学、经济学及医学等领域的应用。本书论述新颖的统计技术,同时使其中的数学论证能被大多数人所理解。 本书许多内容都基于作者自己的工作,某些内容是首次出版。本书适合学生、应用数据分析学者及科研人员阅读,对统计学及其他广阔领域的研究也颇有价值。 本书作者Jim Ramsay是McGill大学的心理学教授,加拿大统计学会主席,多元分析
首先,这部书讲清楚了泛函分析理论对数学其他领域的应用。例如,第2A卷讲述线性单调算子。他从椭圆型方程的边值问题出发,讲问题的古典解,由于具体物理背景的需要,问题须作进一步推广,而需要讨论问题的广义解。这种方法背后的分析原理是什么?其实就是完备化思想的一个应用!将古典问题所依赖的连续函数空间,完备化成为Sobolev空间,则可讨论问题的广义解。在这种讨论中间,我们可以看到Hilbert空间的作用。书中不仅有这种理论讨论,而且还讲了怎样计算问题的近似解(Ritz方法)。 其次,这部书讲清楚了分析理论在诸多领域(如物理学、化学、生物学、工程技术和经济学等等)的广泛应用。例如,第3卷讲解变分方法和优化,它从函数极值问题开始,讲到变分问题及其对于Euler微分方程和Hammerstein积分方程的应用;讲到优化理论及其对于控制问题(
陈公宁教授是第6批博士生导师。 《陈公宁文集 解析函数插值与矩量问题》是《北京师范大学数学家文库》的第14部。 《陈公宁文集 解析函数插值与矩量问题》是《北京师范大学数学家文库》的第14部。 执教40多年,讲授数学系(含物理系)基础课程与选修课程多门,编教材2部,专著2部,发表学术论文70多篇。现为中国数学会会员,美国数学会会员,《Mathematical Reviews》评论员。学术研究内容主要是:算子理论与算子代数,矩阵值解析函数插值理论与应用,矩阵理论与应用。在全纯算子函数,有理插值,解析函数插值问题与矩量问题等方面多有建树。