作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算
本书全面系统地介绍了近30年来非参数计量经济学的主要研究成果,尤其是非参数回归模型、半参数回归模型和非参数联立方程模型的主要研究成果。介绍了非参数回归模型的核估计、局部线性估计、近邻估计、正交序列估计、多项式样条估计和惩罚二乘估计,非参数计量经济联立方程模型的局部线性工具变量估计、局部线性两阶段二乘估计和局部线性广义矩估计,还有半参数线性回归模型、半参数非线性回归模型和半参数二元离散选择模型等半参数回归模型的估计。
随着科技进步和社会的发展,数学越来越深入地在自然科学、工程技术和社会科学的各个领域中得到应用,并在有些领域中发挥了关键作用.正如我们的先哲曾经指出:数学处于人类智能的中心;数学是打开科学大门的钥匙.《现实世界的数学视角与思维》通过数学的视角对现实世界的某些侧面进行观察和对一些重要的社会、生产、科技活动进行定量的思维,并通过介绍科技、经济、金融管理中的数学模型和案例,揭示数学的重要性,宣传数学思想,普及数学文化,以期提高读者的数学素养.在阐述数学在科学技术进步和人类精神文明的重大作用的基础上,《现实世界的数学视角与思维》选择了寻优与优化、数据与规律、变化与发展、计划与规划、随机与概率、风险与决策、竞争与博弈、模拟与仿真、模式与分类等人类在社会活动和科技生产活动中经常需要考虑的重要问题,从数学的
本书是作者在北京大学数学系多次讲授群表示论课程的基础上写成的,详细阐述了有限群在特征不能整除其阶的域上的表示理论和特征标理论,也介绍了紧致拓扑群的表示理论,全书共分六章,内容包括:群表示论的基本概念和Abel群的表示;有限群的表示与群代数上的模;群的特征标,表示的张量积,分裂域,群的直积的表示;诱导表示和诱导特征标;紧致群的线性表示。 本书叙述开门见山,由易到难,循序渐进,条理清楚,论证严谨,讲解详细,注意应用,各章中有许多例题,并且几乎每一节也都配有习题,较难的习题有提示。 本书可作为数学系研究生和高年级大学生的教材、物理系和化学系研究生的教学参考书,还可以作为数学工作者和科技工作者进行科研工作的参考书,也可以供学过线性代数和抽象代数的读者自学使用。
本书系统地介绍了线性算子半群的基本理论及其在发展方程中的应用。全书共分为八章:前两章是预备知识;第三章介绍C0半群和解析半群的基本理论;第四章介绍半线性发展方程的抽象结论;第五章和第六章分别介绍半线性抛物型方程和波动方程;第七章介绍分数幂算子、分数幂空间和拟线性抛物型方程;第八章介绍Schrōdinger方程。本书的特点是强调应用和实例。书中内容深入浅出,文字通俗易懂,并配有适量难易兼顾的习题。 本书可作为偏微分方程、动力系统、泛函分析、计算数学、控制论方向与理工科相关方向研究生的教材和教学参考书,亦可作为数学、工程等领域的青年教师和科研人员的参考书。
本书可作为高等师范院校教育学院、教师进修学院数学专业及重量、省级中学数学骨培训班的教材或教学参考书,也可作为广大中学数学教师及数学爱好者拓展数学视野读物。
本书将结构有限元分析的基本力学概念与ANSYS实践紧密结合,通过大量生动的原创性分析实例,向读者系统全面地介绍利用ANSYS进行各类结构分析的方法。本书内容选择上照顾到科研以及工程计算两方面读者的需要,涉及到各类常见工程结构及构件的各种分析问题以及一些力学过程或现象的分析专题。通过本书的学习可使读者迅速地提高自身的ANSYS操作水平以及利用有限元技术进行结构分析的功底,从而具备在相关专业领域中进行高级结构分析能力。 本书适合于作为土木、机械、航空、力学等相关专业研究生或高年级本科生学习结构数值分析及ANSYS软件应用课程的主要学习参考书。对从事结构分析的工程技术人员也具有的参考价值。
该书是目前国内本较为全面地介绍观鸟活动和观鸟技巧,并提供相关实用图鉴资料的图书。该书旨在为国内日渐扩大的鸟迷队伍提供一本知识性、资料性、实用性俱佳的实用手册。 ??
本书并不是一本论文集,而是一系列讲稿的有机组合。本书涉及了Menger定理、重构、矩阵—树定理、Brooks定理、Grinberg定理、平面图等核心论题。在讲述时不仅关注原理本身,而且关注其推导过程。如果想对图论有个基本的了解,本书是选择。另外,书中每一章都附有习题、注记和详尽的参考文献。“相信本书会对在坚实的理论与技术基础上搭建起图论的大厦起到十分重要的作用。”
《应用过程:概率模型导论(英文版·0版)》由SheldonM.Ross所著,叙述深入浅出,涉及面广。主要内容有变量、条件概率及条件期望、离散及连续马尔可夫链、指数分布、泊松过程、布朗运动及平稳过程、更新理论及排队论等;也包括了过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关模拟的内容,给系统运行的模拟计算提供了有力的工具。除正文外,《应用过程——概率模型导论(0版:英文版)》有约700道习题,其中带星号的习题还提供了解答。 ????《应用过程:概率模型导论(英文版·0版)》可作为概率论与统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业的过程基础课教材。
《射影几何趣谈》(作者冯克勤)深入地探讨和介绍了射影几何这一几何分支的基本内容,并讲述了平面射影几何当中一些有趣的定理和概念。同时通过大量的例子来说明,如何利用射影几何的知识和方法解决平面几何学中的问题。《射影几何趣谈》适合初、高中师生,以及高等师范类院校数学教育专业的大学生和数学爱好者参考阅读。
本书首先从均匀各向同性介质中弹性波动方程基本理论出发,给出波动方程的一般形式及其求解方法,为读者提供一个对所研究问题的基本描述。然后,基于一阶和二阶弹性波动方程,分别讨论了波动方程的交错网格有限差分方法、不规则网格有限差分方法,通过严格的公式推导建立不同格式的有限差分方程,给出了震源和边界条件的处理方法;针对均匀各向异性介质、非均匀各向异性介质、双相孔隙介质等复杂情况逐步展开探讨,给出并对各种差分格式作了稳定性和数值频散分析,导出了稳定性条件。在波动方程有限差分数值方法的理论分析基础上,本书还给出各种不同复杂介质模型的数值算例,并在书中提供相关源程序代码,便于读者迅速理解并掌握波动方程有限差分数值方法。 本书的读者对象包括大专院校本科生、研究生,也可作为讲授弹性波动力学的
不定方程(又称丢番图方程)是数论中一个古老而又有趣的分支。迄今未获解决的费马大定理就是属于不定方程的。由于近年来对不定方程研究有很大进展,这一学科与代数几何、代数数论、组合数学、计算机科学的联系又很密切,因此不定方程仍然引起许多人的兴趣。 柯召、孙琦编著的《谈谈不定方程》概括地介绍了不定方程的主要内容。《谈谈不定方程》中谈到了历史上许多的问题和猜想,介绍了解决这些问题的方法(大部分是初等方法,少量是代数数论方法),概述了一些近代成果(例如有重大意义的Baker的有效方法)等。可供有志于了解不定方程的中学老师和广大数学爱好者阅读。
本书是作者在北京大学数学系多次讲授群表示论课程的基础上写成的,详细阐述了有限群在特征不能整除其阶的域上的表示理论和特征标理论,也介绍了紧致拓扑群的表示理论,全书共分六章,内容包括:群表示论的基本概念和Abel群的表示;有限群的表示与群代数上的模;群的特征标,表示的张量积,分裂域,群的直积的表示;诱导表示和诱导特征标;紧致群的线性表示。 本书叙述开门见山,由易到难,循序渐进,条理清楚,论证严谨,讲解详细,注意应用,各章中有许多例题,并且几乎每一节也都配有习题,较难的习题有提示。 本书可作为数学系研究生和高年级大学生的教材、物理系和化学系研究生的教学参考书,还可以作为数学工作者和科技工作者进行科研工作的参考书,也可以供学过线性代数和抽象代数的读者自学使用。
随着科技进步和社会的发展,数学越来越深入地在自然科学、工程技术和社会科学的各个领域中得到应用,并在有些领域中发挥了关键作用.正如我们的先哲曾经指出:数学处于人类智能的中心;数学是打开科学大门的钥匙.《现实世界的数学视角与思维》通过数学的视角对现实世界的某些侧面进行观察和对一些重要的社会、生产、科技活动进行定量的思维,并通过介绍科技、经济、金融管理中的数学模型和案例,揭示数学的重要性,宣传数学思想,普及数学文化,以期提高读者的数学素养.在阐述数学在科学技术进步和人类精神文明的重大作用的基础上,《现实世界的数学视角与思维》选择了寻优与优化、数据与规律、变化与发展、计划与规划、随机与概率、风险与决策、竞争与博弈、模拟与仿真、模式与分类等人类在社会活动和科技生产活动中经常需要考虑的重要问题,从数学的