本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个极具价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
全书分为三大部分: 主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第1章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第2章我们比较了多种不同的数据模型和查询语言,讨论各自的适用场景。接下来第3章主要针对存储引擎,即数据库是如何安排磁盘结构从而提高检索效率。第4章转向数据编码(序列化)方面,包括常见模式的演化历程。 我们将从单机的数据存储转向跨机器的分布式系统,这是扩展性的重要一步,但随之而来的是各种挑战。所以将依次讨论数据远程复制(第5章)、数据分区(第6章)以及事务(第7章)。接下来的第8章包括分布式系统的更多细节,以及分布式环境如何达成一致性与共识(第9章)。 主要针对产生派生数据的系统,所谓派生数据主要指在异构系统中,如果无法用一个数
《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 ============= 《华为数字化转型之道》 本书由华为公司质量与流程IT团队官方出品,从认知、理念、转型框架、规划和落地方法、业务重构、平台构建等多个维度全面总结和阐述了华为自身的数字化转型历程、方法和实践,能为准备开展或正在开展数字化转型的企业提供系统、全面的参考。
计算广告是一项新兴的研究课题,它涉及大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学等诸多领域的知识。本书从实践出发,系统地介绍计算广告的产品、问题、系统和算法,并且从工业界的视角对这一领域进行具体技术的深入剖析。 本书立足于广告市场的根本问题,从计算广告各个阶段所遇到的市场挑战出发,以广告系统业务形态的需求和变化为主线,依次介绍合约广告系统、竞价广告系统、程序化交易市场等重要课题,并对计算广告涉及的关键技术和算法做深入的探讨。这一版中更是加入了深度学习的基础方法论及其在计算广告中的应用。 无论是互联网公司商业化部门的产品技术人员,还是对个性化系统、大数据变现或交易有兴趣的产品技术人员,传统企业互联网化进程的决策者,传统广告业务的从业者,互联网创
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第壹部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式
内容简介这是一部能指引零基础读者顺利完成数据资产入表的实操性著作。它不仅为读者提供了数据资产入表所需的全部知识,还给出了实际操作层面的方法指引;既是数据资产入表的初学者指南,也是企业实施数据资产入表操作的工作手册。本书由数据资产管理领域的标杆企业亿信华辰倾情奉献,同时融合了行业的先进实践经验,开创性提出 数据资产三次入表理论 (数据原始资源入表、数据产品入表、数据金融资产入表),得到了来自学术界和企业界的12位数据资产管理专家的高度评价和强烈推荐。本书分为四部分,不仅从战略、方法、工具、实操、案例等角度为读者提供了全面的数据资产入表知识体系,还前瞻性地探讨了数据资产入表后的价值挖掘、资产评估和金融创新。第一部分 数据资产入表全景概览(第1和第2章)深入分析数据资产入表的宏观背景、核
随着TheDataWarehouseToolkit(1996)第1版的出版发行,RalphKimball为整个行业引入了维度建模技术。从此,维度建模成为一种被广泛接受的表达数据仓库和商业智能(DW/BI)系统中数据的方法。该经典书籍被认为是维度建模技术、模式和实践的资源。 该书汇集了到目前为止全面的维度建模技术。 该书采用新的思路和实践对上一版本进行了全面修订,给出了设计维度模型的全面指南,既适合数据仓库新手,也适合经验丰富的专业人员。 该书涉及的所有技术都基于作者实际从事DW/BI的设计经验,通过实际案例加以描述。 该书主要内容: 实用设计技术 有关维度和事实表的基本和高级技术。 14个案例研究,涉及零售业、电子商务、客户关系管理、采购、库存、订单管理、会计、人力资源、金融服务、医疗卫生、保险、教育、电信和运输等。
本书从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和 新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的一本书。
K线图已经成为金融交易平台和图表程序的关键组成部分。使用这些图表,交易者们从中学习基础模式,用于解释价格走势历史,并预测未来市场。这本详细的指南向投资组合经理、量化分析师、策略师和分析师展示了如何使用Python来识别、扫描K线图模式,根据模式进行交易,并回测K线图模式的盈利能力。 金融作家、交易顾问和机构市场策略师Sofien Kaabar在本书中展示了如何创建K线图扫描器和指标,通过这些指标,我们可以比较不同模式的盈利能力。通过这本实践指南,你还将探索一种类似K线图的新型图表系统,以及从未介绍过的新模式。 通过这本书,你将学会: 创建并理解经典和现代K线图模式所需的条件。 学习这些模式背后的市场心理。 使用一个框架来学习如何进行交易策略的回测。 探索不同的图表系统并理解它们的局限性 在Python中导入不同时间框架的OHLC
《Power BI商业智能数据分析与可视化》以DAX为核心线索,围绕数据分析和数据可视化,系统全面地介绍了Power BI的核心知识体系。 《Power BI商业智能数据分析与可视化》的主要内容包括数据分析和数据可视化基础知识,Power Query数据获取、转换与加载,Power BI数据模型,DAX基础和进阶知识、DAX的实践案例、DAX驱动数据可视化交互,仪表板开发实践、仪表板多场景应用,以及AI辅助学习等。 《Power BI商业智能数据分析与可视化》体系完整、重点突出、内容新颖翔实、案例贴近实际,适合数据分析师、Power BI分析人员、Excel高级用户,以及想提高数据分析能力的各类人员阅读。
本书由一线数据分析师精心编写,通过大量案例介绍了数据分析工作中常用的数据分析方法与工具。本书包括5章内容,分别是数据分析入门、数据分析 从玩转Excel开始、海量数据管理 拿MySQL说事儿、数据可视化 Tableau的使用、数据分析进阶 Python数据分析。本书通俗易懂、通过大量贴近企业真实场景的案例,帮助读者在提高数据处理技能的同时加深对数据分析思维的理解。 本书适合有志于从事数据分析工作或已从事初级数据分析工作的人士自学,也可作为产品经理、运营人员、市场人员、对数据分析感兴趣的企业高管以及创业者的参考用书。
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本权威、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的*发展和应用,程序员可以从中探
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
作为一本 Power Query 初级入门读本,《Power Query 智能化数据汇总与分析》不深入介绍 M 函数,而是结合大量的实际案例,利用 Power Query 可视化的操作向导,来解决实际工作中烦琐的数据整理、汇总和分析问题,让读者在短时间内,能够对 Power Query 有一个较为全面的了解和掌握,并能迅速提升数据处理和统计分析效率。 《Power Query 智能化数据汇总与分析》适合具有 Excel 基础知识并经常处理大量数据的各类人员阅读,也可作为大专院校经济类本科生、研究生和 MBA 学员的教材或参考书。
本书的主要内容有:熟悉Spark的编程模型和生态系统。学习数据科学的一般方法。检查分析大型公共数据集执行步骤的完整性。发现哪些机器学习工具对特定问题有帮助。探索可适应多种用途的代码。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
本书主要以项目实战为主线,从0到1的项目开发流程,教会读者如何开发全栈项目。它基于最新的Spring Boot3.1以上版本和Vue.js3.0版本的前后端分离项目开发,以及面向用户端的uni-app的小程序开发。本书基础的知识会在项目的开发过程中穿插讲解,不会单独的基础知识讲解,采用实战驱动学习知识的教学方法,并通过详细的代码示例、清晰的图解和源码解析帮助读者快速理解和掌握全栈项目开发的技巧和最佳项目实践。 本书共22章,包括Spring Boot篇、Vue篇和uni-app篇。Spring Boot篇(第1~14章)从环境搭建到项目上线,逐步深入讲解项目开发流程,并使用了众多企业级流行的开发技术,如Redis、Docker、Jenkins、Mybatis-plus等。Vue.js篇(第15~19章)使用Vue 3.0版本,采用开源的Vue.js框架Vue-Vben-Admin作为项目启动模板,帮助快速搭建后台管理系统,节约时间成本等。uni-app篇(第20~22章
本书通过对多个实例的演示与讲解,详细介绍了Excel的*功能组件Power Query在数据查询与数据转换方面的主要功能。全书共分为8章,主要包括Power Query编辑器的基本功能,常见数据类型的查询与导入,对原始数据进行合并、拆分、计算、转换等数据整理操作,Power Query中M公式的编写方法等。 本书语言风趣,专注于具体的应用场景,而不拘泥于功能本身,图示清晰、可操作性强且便于查阅,能有效帮助读者提高Excel的使用水平,提升工作效率。 本书主要面向Excel的初、中级用户以及IT技术人员,对于Excel高级用户也具有一定的参考价值。
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
本书介绍了超级计算机算力和AI算力的异同,从CPU流水线开始,描述主要的众核处理器架构和功能部件设计。在GPU和NPU等加速器部分,介绍了GPU为何能从单纯的图形任务处理器变成通用处理器。GPU在设计逻辑、存储体系、线程管理,以及面向AI的张量处理器方面成为最近几年全世界科技行业最瞩目的明星。本书对华为等厂商推出的NPU芯片设计也做了架构描述,中国也拥有独立自主知识产权的高算力芯片,并且支持多芯片、高带宽互连。本书也回顾了近20年来主流的CPU、GPU芯片架构的特点,介绍了存储与互连总线技术,即大模型专用AI超级计算机的中枢核心。
本书旨在为包括研究生和工业从业者在内的研究人员提供有关为数据驱动的进化优化而开发的最新方法的全面描述。本书共分12章,第1~4章简要介绍了优化、进化计算和机器学习中精心挑选的重要主题和方法。第5章提供了数据驱动优化的基础知识,包括启发式算法和基于获取函数的代理模型管理。第6章介绍使用多个代理模型进行单目标优化的方法。第7~8章中描述用于求解多目标和多目标优化算法的代表性进化算法以及代理模型辅助数据驱动的进化多目标和多目标优化。第9章详细阐述了高维数据驱动优化的方法。第10章描述迁移学习和迁移优化。第11章讨论离线数据驱动的进化优化,以翼型设计优化等实际优化问题为例、原油蒸馏优化和急救系统优化。最后,第12章强调了深度神经架构搜索作为数据驱动的昂贵优化问题。