《Processing程序交互与数据视觉艺术实践》全面而深入地讲解了Processing在数据可视化设计领域的基础编程知识与创作实践技巧。全书共分为8章,内容包括初识数据视觉艺术、代码艺术与视觉创意、生成艺术、动态视觉效果、数据的视觉表达、数据接入与应用、传感器与数据交互,以及GUI交互设计。书中不仅展示了使用Processing处理文本和表格数据的方法、应用网络数据的技巧,而且讲解了通过Arduino传感器、摄像头、麦克风等设备进行数据采集的方式。此外,本书还详细介绍了如何利用鼠标、键盘与图形用户界面(GUI)进行交互协作的方法,旨在帮助读者创作出优秀的数据可视化新媒体作品。 本书可作为高等院校视觉传达设计、信息艺术设计、广告设计、数字媒体、新媒体艺术等专业的教材,也可作为数据信息视觉化设计从业者的参考书。
本书以实际案例和具体应用为驱动,以培养科研统计思维为目标,借助 SPSS,系统地讲授了差异显著性检验、方差分析、相关性分析、回归分析、聚类分析、主成分分析,以及结构方程模型的概念、原理和具体使用。 全书共 8 章。第 1 章系统地讨论了科研统计思维及统计分析的相关概念,并以量化类典型论文为例抛出统计思维的核心问题。第 2 章介绍了数据的规范化及预处理,重点讲解了基于数据做论证所必需的前置操作。第 3 章介绍了统计描述及数据加工。第 4 章讲解了差异显著性检验。第 5 章介绍了方差分析及其高级应用,阐述了单因素方差分析、多因素方差分析、协方差分析、多因变量方差分析等内容,以及事后检验、均值边际图等高级应用的相关知识。第 6 章介绍了关联性分析技术和回归分析。第 7 章讲解了聚类分析技术。第 8 章介绍了因子分析与降维
内容简介这是一部能指引零基础读者顺利完成数据资产入表的实操性著作。它不仅为读者提供了数据资产入表所需的全部知识,还给出了实际操作层面的方法指引;既是数据资产入表的初学者指南,也是企业实施数据资产入表操作的工作手册。本书由数据资产管理领域的标杆企业亿信华辰倾情奉献,同时融合了行业的先进实践经验,开创性提出 数据资产三次入表理论 (数据原始资源入表、数据产品入表、数据金融资产入表),得到了来自学术界和企业界的12位数据资产管理专家的高度评价和强烈推荐。本书分为四部分,不仅从战略、方法、工具、实操、案例等角度为读者提供了全面的数据资产入表知识体系,还前瞻性地探讨了数据资产入表后的价值挖掘、资产评估和金融创新。第一部分 数据资产入表全景概览(第1和第2章)深入分析数据资产入表的宏观背景、核
内容简介 这是一部全面讲解数据产品经理核心知识体系的著作。12位作者大多来自国内的知名企业,涉及不同的行业,让本书拥有了更广泛的视角,能帮助读者从不同的角度去了解数据产品经理如何在数据、产品、运营、市场等多个方面产生价值。本书的*终目的是让读者全面了解数据产品经理的工作内容、系统掌握数据产品的核心知识体系,快速实现从入门到进阶的突破。 全书一共11章,重点讲解了数据产品经理应该掌握的11个核心知识点,可以概括为四个部分。 第壹部分 基础知识(第1章) 首先介绍了数据产品的定义、组成、分类,其次介绍了数据产品经理的分类和能力模型,*后介绍了数据产品经理的招聘、应聘和面试。 第二部分 通用能力(第2~3章) 讲解了数据产品经理应该具备的数据分析能力和项目运作能力(产品路线图)。 第三部分 数据管理(第4~9章
本书共13章,分三个部分:基础篇、实战篇、提高篇。 (1)基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。 (2)实战篇(第6~12章),重点对数据挖掘技术在金融、航空、零售、农业、制造和互联网等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。 (3)提高篇(第13章),围绕去编程化的TipDM大数据挖掘建模平台,先介绍了平台每个模块的功能,再以航空公司客户价值
本书从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和 新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的一本书。
这是一本教我们如何制作完美可视化图表,挖掘大数据背后意义的书。作者认为,可视化是一种媒介,向我们揭示了数据背后的故事。他循序渐进、深入浅出地道出了数据可视化的步骤和思想。本书让我们知道了如何理解数据可视化,如何探索数据的模式和寻找数据间的关联,如何选择适合自己的数据和目的的可视化方式,有哪些我们可以利用的可视化工具以及这些工具各有怎样的利弊。 作者给我们提供了丰富的可视化信息以及查看、探索数据的多元视角,丰富了我们对于数据、对于可视化的认知。对那些对设计和分析过程感兴趣的人,本书无疑就是一本书。
Apache ShardingSphere 是一个基于可插拔特性和云原生原则的新开源生态系统,将其用于分布式数据基础设施有助于增强数据库性能。本书首先简要概述数据库管理系统在生产环境中面临的主要挑战和数据库软件的内核概念;然后介绍使用分布式数据库解决方案、弹性伸缩、用户身份认证、SOL授权、全链路监控、数据库网关和 DistSOL的真实示例,全面讲解 ShardingSphere 的架构组件,以及如何利用它们配置和插入现有的基础架构并管理数据和应用;接着介绍生态系统的客户端 ShardingSphere-JDBC 和 ShardingSphere-Proxy,以及它们如何同时或独立地工作以满足实际需求;最后讲解如何定制可插拔架构以定义个性化的用户策略和无缝管理多个配置,并在各种场景下对数据库进行基准测试和性能测试。
本书包括导论以及对齐(Align)、细化(Refine)、设计(Design)三章。通过将业务术语、逻辑和物理三个建模层次重命名为对齐、细化、设计,在名称中包含了该层次所做的工作。 导论介绍了数据模型的三个特征 精确性、最小化和可视化;数据模型的三个组件 实体、关系和属性;数据模型的三个层次 业务术语(对齐)、逻辑(细化)和物理(设计),以及数据建模的三个视角 关系、维度和查询。第1章对齐是关于通用业务术语的,以便每个人都能在术语和总体计划范围上保持一致。第2章细化是关于搜集业务需求的,即完善我们对项目的了解,专注于关键业务要点。第3章设计是关于技术需求的,即针对独特软硬件需求进行模型设计。 对齐、细化和设计,这就是本书遵循的方法,并通过 宠物之家 案例对概念加以强化。本书适合需要将建模技能扩展到MongoDB的数据
《基于Python的大数据分析基础及实战》是一本介绍如何用Python 3.6进行数据处理和分析的学习指南。其主要内容包括:Python语言基础、数据处理、数据分析、数据可视化,以及利用Python对数据库的操作、自建Python应用库的共享发布等。 《基于Python的大数据分析基础及实战》分3个部分:第1部分为基础知识,第2部分为实战案例,第3部分为拓展与延伸。本书内容丰富,讲解通俗易懂,非常适合本科生、研究生,以及对Python语言感兴趣或者想要使用Python语言进行数据分析的广大读者。
本书系统地阐述信息传播问题中所涉及的各种传播模型、数学优化方法以及计算方法等,并通过对大量信息传播的实际问题进行了建模与分析。该著作将为人工智能、大数据、管理科学、运筹学、人文社会科学等领域开展相关研究的本科生、研究生以及学者提供重要的参考。
本书介绍数据存储架构与技术,涵盖存储盘与存储介质、存储阵列、存储协议、键值存储、文件系统、网络存储体系结构、分布式存储系统、存储可靠性、存储安全、数据保护等基础内容,对存储维护、存储解决方案、存储技术趋势与发展等主题进行了深入讨论,以新的研究成果作为案例,同时提供习题帮助读者加深对数据存储的理解与运用。 本书适合计算机及相关专业高年级本科生或研究生阅读、学习,同时也可供相关专业技术人员参考。
现今,数据已无处不在、无时不用,数据驱动管理决策、科学研究、技术发明、经济生活,数据驱动创新发展,数据成为企业资产、成为生产要素。开发大数据应用、实现数字化转型、提升核心竞争力是各类主体所希望的。开发一个大数据应用项目,需要进行充分的数据准备和技术准备,设计好实施方案,解决实际应用中的问题。本书介绍了多个领域的大数据应用案例研究与实践,包括工业、农业、金融、物流、旅游、气象、医疗、城市管理、城市交通等领域。这些应用案例涵盖了大数据应用的大部分领域,也从一个侧面展示了大数据在实际应用中的挑战。
本书以LabVIEW 2017为基础,讲述LabVIEW图形化编程语言的原理,以及如何利用LabVIEW完成虚拟仪器设计。全书共15章,分为两篇,分别是基础知识篇(第1~13章)和实际应用篇(第14、15章)。第1章,综述虚拟仪器技术的构建思想和方法论。第2~7章,讲述LabVIEW图形化编程语言的基本原理以及编程方法,内容包括LabVIEW入门、基本数据类型、程序结构、复合数据类型、文件I/O、图形显示及其他技巧。第8~12章,阐述如何利用LabVIEW去控制仪器硬件以实现对被测信号的数据采集,内容包括选择专用的数据采集卡进行数据采集; 利用计算机自带的声卡实现数据采集; 利用摄像头完成图像采集; 仪器控制和控制单片机。第13章,讲述用LabVIEW实现仪器应用的若干算法和信号分析处理的相关知识。第14、15章,介绍利用LabVIEW完成有实际应用背景的两个虚拟仪器项目,分别是用LabVIEW构建函
本书深入地探讨云原生数据仓库的理论知识与技术实践,涵盖数据仓库的发展历程、大数据处理技术、云原生数据仓库的概念与特点,以及云计算时代的数据仓库技术。书中详细介绍云原生数据仓库的架构设计,计算引擎、优化器、存储的关键技术,以及资源管理与调度等知识。同时,本书结合Redshift、Snowflake、BigQuery等典型的云原生数据仓库,以及AnalyticDB等具有代表性的国产数据仓库,介绍大量的实践案例。此外,书中针对云原生数据仓库的资源调度、查询优化、运维管理等方面进行深入的剖析,提供大量的最佳实践和应用场景。
本书由浅入深地阐述了时序大数据平台TDengine的核心原理与实战案例。首先,本书为读者提供了时序数据的基础知识和TDengine的核心特性概览,包括数据模型、数据写入、数据查询、数据订阅和流计算等;其次,详细介绍了TDengine的日常运维管理,包括安装部署、资源规划、图形化管理、数据安全等关键内容;然后,深入讲解了如何利用TDengine进行应用开发,涵盖多种编程语言的连接器使用、订阅数据,以及自定义函数的开发等高级功能;接下来,为数据库研发爱好者揭秘TDengine的内核设计,从分布式架构到存储引擎、查询引擎、数据订阅,再到流计算引擎的详细阐述;最后,通过分析典型应用场景案例,展示TDengine如何在实际业务中发挥作用。 本书架构清晰,内容丰富,理论与实践相结合,适合作为需要使用TDengine进行大数据处理的开发者、架构师和产品经理的技
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以业务案例为导向,以Power BI桌面版操作为基础进行讲解,深入讲述Power BI在各个业务部门的应用。本书包括7篇共21章内容,分业务场景进行讲解。第1篇用1章内容讲述Power BI基础操作,方便读者快速入门;第2篇用4章内容讲述如何用Power BI爬取天气、电影、销售、股票等数据;第3篇用4章内容讲述销售部门如何用Power BI分解销售目标,分析业绩达成、会员RFM和业绩构成;第4篇用5章内容讲述产品相关应用,包括存货分析、帕累托分析、关联分析、畅销款分析和数据化陈列;第5篇用2章内容讲述在财务方面的应用,包括盈亏平衡分析和上市公司利润表分析;第6篇用3章内容讲述人力资源应用,包括人员结构及离职率分析、新员工分析和考勤分析;第7篇用2章内容讲述简化报告的技巧。
内容简介这既是一本系统讲解数据资产价值变现的入门书,又是一本全面介绍数据要素的科普书,它能帮助零基础的读者厘清数据要素各种概念并建立系统的知识体系,同时还能掌握数据资产价值变现的认知、实现路径和实操方法。本书由凯捷咨询前亚太区副总裁、阿里云中国区前咨询总经理撰写,全球数据资产理事会(DAC)联合出品。本书是《精益数据方法论:数据驱动的数字化转型》一书的姊妹篇,后者讲了如何制定数据战略、梳理数据场景、开发数据产品,如何利用精益数据方法转型为数字化企业;前者为数字化企业的数据资产变现给出了方案。全书一共17章,分为5篇。第一篇 数据要素基础与政策环境首先详细介绍了数据要素的定义、特征以及20余个该领域的相关概念,彻底厘清读者对数据要素的认知;然后全面分析了国家在数据要素领域的布局以及与之相
面对小数据和大数据,数据分析师应该如何收集数据信息?传统的业务框架如何与统计学相关联?测量学扮演着什么角色?建模过程有哪些预分析技术和修正技术?建模工作完成后,如何解析?如何归因?如何预测?等等,这些数据分析能力构成了本书的分析框架。本书分为8章,小数据与大数据分析模式的动态切换贯穿全书,展示了数据分析案例的模块化分析思路。第1~3章为数据预分析部分,强调业务问题与统计问题的衔接;第4~6章为统计建模阶段,其中附有对行业案例和业务敏感度的训练、对统计和业务整合的审美建议,进而构造出一套具有灵活调校的数据分析模式。第7~8章解决的问题是,如何将晦涩难懂的统计解释转换成业务解释。由衷地希望本书能够成为数据运营人员与初中级数据分析师分析数据的行动指南。
全书分为:灵活的数据布局、应用感知及可视化存储智能、存储类芯片、储海钩沉、集群和多控制器、传统存储系统、新兴存储系统、大话光存储系统、体系结构、I/O协议栈及性能分析、存储软件、固态存储等,其中每章又有多个小节。每一个小节都是一个独立的课题。本书秉承作者一贯的写作风格,完全从读者角度来创作本书,语言优美深刻,包罗万象。另外,不仅阐释了存储技术,而且同时也加入了计算机系统技术和网格技术的一些解读,使读者大开眼界,茅塞顿开,激发读者的阅读兴趣。 本书适合存储领域所有从业人员阅读研习,同时可以作为《大话存储*版》的读者的延伸高新资源。
《谁说菜鸟不会数据分析(Python篇)》从解决工作实际问题出发,提炼总结工作中Python 常用的数据处理、数据分析实战方法与技巧。本书力求通俗易懂地介绍相关知识,在不影响学习理解的前提下,尽可能地避免使用晦涩难懂的Python 编程、统计术语或模型公式。 《谁说菜鸟不会数据分析(Python篇)》定位是带领Python 数据分析初学者入门,并能解决学习、工作中大部分的问题或需求。入门后如还需要进一步进阶学习,可自行扩展阅读相关书籍或资料,学习是永无止境的,正所谓 师傅领进门,修行在个人 。
随着中台概念被广泛讨论,其中数据中台又被赋予担任企业智能化任务的重任。当前,不仅是大企业,很多企业都在开始打造或者引入中台,用来解决企业面临的系统重复建设与数据孤岛的问题,在这个过程中,中台产品经理需要做什么事,解决什么问题,又会遇到怎样的困难与挑战? 本书第1~2章讲解了中台起源与数据中台产品需要什么样的能力;第3~6章主要讲解中台中的数据中台的建设与规划、数据分析的方法与策略、数据体系建设方法与应用和企业数据的价值等;第7~9章主要讲解数据平台的需求分析与数据知识、系统平台的建设实战和用户画像体系的建设等内容。
本书的主要内容包括网络数据的定义及相关指标、大规模网络中的链路预测、网络聚类分析、网络数据中的空间自回归模型、大规模网络数据中的模型估计方法、网络数据中的空间自回归模型的拓展及应用、网络中的空间自回归模型的其他研究方向等。本书关注大规模网络数据分析中的模型方法。除模型方法本身的理论拓展之外,在估计方法等方面会涉及大规模数据中的快速计算方法。由于网络分析本身的范围非常广泛,故本书涉及的内容仅局限于作者及团队研究工作中使用到的一部分。在本书的后,为了启发读者思路,对于部分已有网络研究进行了梳理。
本书以当前稳定版 HBase 2.4.9 为基础,将 Hadoop 升级到 2.10.1 版本,并对客户端 API 进行升级。本书以精练的语言介绍 HBase 的基础知识,让初学者能够快速上手使用 HBase;深入分析 HBase 的核心思想(如数据读取和数据备份等)和 HBase 架构(如 B+树、LSM 树和 WAL 等),专注于 HBase 在线实时系统的调优,使 HBase 集群响应延迟更低,让有经验的 HBase 开发人员能循序渐进地理解 HBase 源代码,更好地调试和解决各种实际问题;本书从企业常见的“用户行为日志管理系统”着手,结合 HBase 的实际应用场景,让读者快速上手,真正做到从入门到实践。 本书非常适合作为有一定 Java 基础的开发人员的 HBase 入门教程,也适合作为HBase 运维人员部署和监控 HBase 的参考手册,还适合作为将 HBase 应用到在线生产环境中的开发人员进行 HBase 在线集群性能调优的技术指南。
生物医药大数据蕴含了非常丰富的信息和知识,是关乎人类生存与健康的重要战略资源,但只有对生物医药大数据进行高效处理和智能分析,才能真正推动生物医药研究和产业化从原来的假设驱动向数据驱动转变,因而近些年来生物医药大数据与智能分析逐渐成为潜力巨大且发展迅猛的交叉领域。本书简要介绍了并行计算、机器学习和深度学习应用于生物医药大数据的相关基础知识,并总结了作者团队在生物医药大数据处理和分析领域的若干成果,主要涵盖基因表达谱分析、微生物基因组、药物虚拟筛选、肿瘤基因表达谱分类、RNA编辑位点识别、增强子识别等,以作者团队的研究成果为实际案例,详细介绍了研究的路线和方法。 本书属于高性能计算、大数据、机器学习和生物医药等专业的交叉领域,可以为这些领域的研究人员提供参考,也可作为相关专业高年级