本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
注意 作为一切思维活动的起点,一直是哲学、心理学和认知神经科学的重点研究对象。随着计算机技术的发展,人类对注意力机制的模拟和应用成为计算机科学领域的热点研究方向 让计算机能够具有类似人类的注意力机制,使其能够有效地应用于对数据的理解和分析。Transformer模型诞生后,注意力机制在人工智能各大重要领域的研究和应用更是如火如荼,成果丰硕。 《人工智能注意力机制:体系、模型与算法剖析》从注意力机制这一重要角度入手,阐述注意力机制的产生背景和发展历程,通过详实的理论剖析,以深入浅出的方式着重介绍注意力机制在计算机视觉、自然语言处理,以及多模态机器学习三大人工智能方向中的应用思路、模型与算法。 《人工智能注意力机制:体系、模型与算法剖析》以人工智能相关专业研究人员,特别是计算机视觉与自然语言处理
本书全面介绍贝叶斯推理与机器学习,涉及基本概念、理论推导和直观解释,涵盖各种实用的机器学习算法,包括朴素贝叶斯、高斯模型、马尔可夫模型、线性动态系统等。本书在介绍方法的同时,强调概率层面的理论支持,可帮助读者加强对机器学习本质的认识,尤其适合想要学习机器学习中的概率方法的读者。本书首先介绍概率论和图的基础概念,然后以图模型为切入点,用一种统一的框架讲解从基本推断到高阶算法的知识。本书不仅配有BRML工具箱,而且提供大量MATLAB代码实例,将概率模型与编程实践相结合,从而帮助读者更好地理解模型方法。
通过一系列的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。 在更新的第3版中,作者Aur lien G ron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。
本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。 本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的 scikit-learn 库和深度学习的 Keras 库(这两种库均基于 Python 语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者更好地了解学习。 本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。
本书涵盖了从工业机器人入门到安川工业机器人产品应用全面的知识与技术。全书从机器人的产生、发展和分类,工业机器人的组成特点、技术性能和产品等基础知识出发,对工业机器人本体及谐波减速器、RV减速器等核心部件的结构原理、机械设计、安装维护等进行了全面阐述;对坐标系与姿态定义方法、程序结构及安川工业机器人的全部命令、变量编程进行了详尽说明;对手动与示教操作、程序与作业文件编辑及调试、再现运行、系统设置与维修操作进行了完整介绍。 本书面向工程应用,技术先进、知识实用、选材典型,内容全面、由浅入深、循序渐进,是工业机器人设计、使用、维修人员和高等学校师生的参考书。
本书详实介绍了数据挖掘与机器学习相关的各种内容,包括数据矩阵、图数据、核方法、项集挖掘、聚类、贝叶斯分类器、决策树、支持向量机、线性回归、逻辑回归、神经网络、深度学习等,介绍其相关概念和基础算法,并在每章的末尾配有相关练习。第二版新增了几个关于回归的章节,包括神经网络和深度学习的内容。
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
本书介绍自然语言处理的一个应用 机器翻译及相关知识。全书分为三部分。部分包含第1~4章,简要介绍机器翻译中的问题、机器翻译技术的实际应用及历史,讨论一直困扰机器翻译领域的译文质量评价问题。第二部分包含第5~9章,解释神经网络、基本机器翻译模型的设计,以及训练和解码的核心算法。第三部分包含第10~17章,既涵盖构建新模型的关键内容,也涉及开放性的挑战问题和一些未解决问题的前沿研究。本书主要面向学习自然语言处理或机器翻译相关课程的本科生和研究生,以及相关研究领域的研究人员。
本书是《动手学深度学习》的重磅升级版本,选用PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出基础的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描述的线性代
本书介绍了经典人工智能(逻辑或演绎推理)和现代人工智能(归纳学习 经网络)之间的覆盖范围。分别阐述了三类方法: 演绎推理方法: 这些方法从预先定义的假设开始,并对其进行推理,以得出合乎逻辑的结论。底层方法包括搜索和基于逻辑的方法。这些方法在第 1 章到第 5 章中讨论。归纳学习方法:这些方法从例子开始,并使用统计方法来得出假设。示例包括回归建模、支持向量机、神经网络、强化学习、无监督学习和概率图形模型。这些方法在第 6 章到第 11 章中讨论。整合推理和学习:第 12 章和第 13 章讨论整合推理和学习的技术。例子包括知识图谱和神经符号人工智能的使用。
本书系统介绍了知识图谱的概念、发展历程、技术体系、前沿技术与应用实践。在基础知识方面,本书囊括了知识图谱从源数据到产生决策的全生命周期的各个环节,分析了数据图谱和知识图谱的核心区别,介绍了图谱构建和知识表示等相关关键技术。在前沿技术方面,全面介绍了知识图谱自动构建、知识图谱融合和智能推理等问题和挑战。在应用实践方面,结合营销智能国家新一代人工智能开放创新平台建设,介绍了知识图谱在信息检索、推荐系统、可视化、问答机器人等场景下的实际操作案例。
近年来,智能物联网、群体智能、工业互联网等新兴技术逐步兴起,人(智能手机、可穿戴设备等)、机(云设备、边缘设备)、物(具感知计算能力的物理实体)这三种基础要素正在走向协作和融合,迈向人机物融合群智计算时代,即通过人、机、物异构群智能体的有机融合,利用其感知能力的差异性、计算资源的互补性、节点间的协作性和竞争性,构建具有自组织、自学习、自适应、持续演化等能力的智能感知计算空间,实现智能体个体技能和群体认知能力的提升。 2020年,根据微软学术(Microsoft Academic)统计分析的关于群智感知(Crowd sensing)研究的作者排名(Top Authors)中,本书作者团队位列全球。本书作者带着十余年从事群智感知计算研究的思考,将传统的 以人为中心 的群智感知计算拓展深化为 人-机-物异构群智能体融合计算 (简称 人机物融合群智计
本书系统地论述了水下机器人设计与分析的基本原理、方法和技术,介绍了FLUENT、MATLAB/Simulink、ANSYS、ADAMS等现代设计分析软件在水下机器人设计中的应用,并以作者及研究团队的科研成果为主线,系统地阐述了水下机器人设计与分析方法。全书共十章,包括水下机器人结构及流线型设计、能源与动力、系统辨识方法、运动分析、底层控制系统、虚拟样机技术、路径规划与轨迹跟踪、仿生侧线感知及局域导航定位方法等方面的内容。
本书理论与实践相结合,系统阐述强化学习的基础知识,以及如何动手编写智能体以执行一系列实际任务。通过阅读本书,读者将获得深层Q网络、策略梯度方法、连续控制问题以及高度可扩展的非梯度方法等主题领域的可行洞见,还将学会如何构建一个经过强化学习训练、价格低廉的真实硬件机器人,并通过一步步代码优化在短短30分钟的训练后解决Pong环境。此外,本书还专门介绍了强化学习的新发展,包括离散优化(解决魔方问题)、多智能体方法、Microsoft的TextWorld环境、高级探索技术等。
本书通过讲解监督学习的两大支柱 回归和分类 将机器学习纳入统一视角展开讨论。书中首先讨论基础知识,包括均方、*小二乘和*大似然方法、岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍新近的技术,包括稀疏建模方法,再生核希尔伯特空间中的学习、支持向量机中的学习、关注EM算法的贝叶斯推理及其近似推理变分版本、蒙特卡罗方法、聚焦于贝叶斯网络的概率图模型、隐马尔科夫模型和粒子滤波。此外,本书还深入讨论了降维和隐藏变量建模。全书以关于神经网络和深度学习架构的扩展章节结束。此外,书中还讨论了统计参数估计、维纳和卡尔曼滤波、凸性和凸优化的基础知识,其中,用一章介绍了随机逼近和梯度下降族的算法,并提出了分布式优化的相关概念、算法和在线学习技术。