本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
本书是一本有思维方法论启示的书;是一本站在历史的高度, 正面思考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和进化中的人类。 本书论述严谨,案例丰富,深入阐释了 奇点 作为一种思潮,其在世界范围内所产生的广泛影响,并介绍了其在哲学、科学、技术、艺术等各个方面所展示的独特魅力。
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
AI写作可以写得又快又好,给内容创作者带来了全新的写作体验,也颠覆了传统的写作方式。本书从7个维度,系统介绍了AI写作的各种技巧,AI写作四步法,RRBE提示词模型,以及AI在各个领域的应用,实操性强,看完就能运用。 本书会带你进入AI写作的世界,从基础知识到高级技巧,掌握AI写作的关键技术,成为AI写作高手。
《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
随着计算科学的快速发展,人工智能已为我们大家熟知。2017 年国务院正式印发《新一代人工智能发展规划》,明确了人工智能的国家战略地位,关于人工智能的科普、技术普及读物也已出现,但符合少年儿童认知的人工智能科普读物却一直是个空白。本书是面向少年儿童的人工智能科普读物,用轻松有趣的笔触和明确简洁的形式介绍人工智能的历史、现状及未来。 本书写给6 岁以上、13 岁以下的青少年读者,深入浅出地介绍了人工智能的发展历史、人工智能的主要研究方向、技术实现流程及人工智能与未来社会的关系探索等。本书从科普和青少年教育的角度出发,培养孩子们对人工智能乃至新科技的认知,目的是让孩子们了解人工智能知识,建立正确的科技价值观和科学的方法论,为将来人工智能的研究和应用做好准备。
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2S),注意力机制,Transformer,从初代GPT到ChatGPT再到GPT-4等一系列突破性技术的诞生与演进。 本书将以生动活泼的笔触,将枯燥的技术细节化作轻松幽默的故事和缤纷多彩的图画,引领读者穿梭于不同技术的时空,见证自然语言处理技术的传承、演进与蜕变。在这场不断攀登技术新峰的奇妙之旅中,读者不仅能深入理解自然语言处理技术的核心原理,还能自己动手,从零开始搭
本书通过近百个实际的研究案例,详细介绍了研究人员如何让ChatGPT成为一位称职的研究助手。利用ChatGPT可以完成以下几方面的工作:①确定研究主题并构建问题。②根据选择的研究问题制定和完善假设。③进行文献综述,覆盖系统综述的所有步骤。④选择适当的研究设计和相应的方法论。⑤开发可靠且高效的研究工具。⑥收集并处理数据。⑦解释分析定量和定性数据。⑧撰写和修改研究论文。⑨处理同行评审意见。⑩通过大众和社交媒体平台传播研究结果。以上所有任务都可以通过在ChatGPT界面中简单地输入提示词来完成。
本书适合任何想要深入了解深度学习这个迷人领域的人,您不需要具备高级数学和编程知识就可以掌握其根本原理。如果您想知道这些工具是如何工作的,并学会自己使用它们,答案尽在书中。而且,如果您已经准备好编写自己的程序,那么随附的Github存储库中还有大量补充的Python笔记本可以帮助您。 本书讲解语言通俗易懂,包含大量的的彩色插图和具有启发性的类比,以及丰富的现实世界的例子,深入地地解释了深度学习的关键概念,包括: 文本生成器如何创建新颖的故事和文章。 深度学习系统如何在人类游戏中学习游戏并获胜。 图像分类系统如何识别照片中的物体或人。 如何以对日常生活有用的方式思考概率。 如何使用构成现代人工智能核心的机器学习技术。 各种各样的智力冒险家都可以使用本书中涵盖的强大思想来构建智能系统,帮助我们更好地理
许多人听到 算法 这个词,就觉得它很难懂,需要专业的编程知识才能明白。然而,算法只是一个计算的 步骤 ,不需要计算机和编程语言基础。 本书介绍了算法的基础知识,数据的储存、分类、查找方法,以及机器学习中使用的算法等,由浅入深,图文配套,并结合使用场景和案例进行细致讲解,初学者读起来也毫无压力。 除了按顺序阅读,获取系统的知识,读者还可以从目录中挑选感兴趣的主题和关键词,按照自己的需求阅读,是一本实用性满分的算法入门书。
本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。 全书共15章,分为三个部分。 分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。 第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。 第三部分
9787115630940 做好课题申报:AI辅助申请书写作 69.80 9787115632784 高效写论文:AI辅助学术论文写作 69.80 《做好课题申报:AI辅助申请书写作》 申报课题是高校教师和科研工作者十分重要的工作内容。 本书采用倒金字塔思路,对课题申请书进行了拆解,并系统介绍了如何利用 AI 辅助做好课题申报工作。本书第一章对课题申报进行了概述,分别介绍了各级别课题的申报公告和申请书及活页。第二章~第十二章分别介绍如何利用 AI 辅助开展课题申报的具体工作,主要有寻找选题、分析课题立项选题,以及课题论证相关部分的写作,包括研究背景写作、学术史梳理及研究动态写作、研究价值写作、阐释研究对象与框架思路写作、课题的重点难点写作、主要目标写作、研究计划及其可行性写作、其他部分写作。本书讲解全面、细致,并采用案例直观展示,方便读者学习。 《高
本书为大模型应用开发极简入门手册,为初学者提供了一份清晰、全面的 可用知识 ,带领大家快速了解GPT-4和ChatGPT的工作原理及优势,并在此基础上使用流行的Python编程语言构建大模型应用。通过本书,你不仅可以学会如何构建文本生成、问答和内容摘要等初阶大模型应用,还能了解到提示工程、模型微调、插件、LangChain等高阶实践技术。书中提供了简单易学的示例,帮你理解并应用在自己的项目中。此外,书后还提供了一份术语表,方便你随时参考。 准备好了吗?只需了解Python,你即可将本书作为进入大模型时代的启动手册,开发出自己的大模型应用。
本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。 全书的内容分为3个部分:*部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本
《文心一言:你的百倍增效工作神器》是一本旨在指导读者通过合理使用文心一言提高工作效率和创作效率的指南手册。本书介绍了文心一言的操作技巧和提示词,列举了文本、文案、方案、个人 IP 内容、个人学习成长和个人生活助手等多个领域的辅助生成应用案例。授人以渔,给人工具; 拿来即用,拿来即参,本书为读者提供使用文心一言的工具、方法、案例和技巧,帮助读者十倍甚至百倍提升工作时的创造力和生产力。
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中非常流行的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。 《PyTorch 2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。 《PyTorch 2.0深度学习从零开始学》适合深
今天,人工智能在我们的生活中随处可见。它能推送我们喜欢的电视节目,帮助我们诊断疑难杂症,还能向我们推荐商品。因此,让我们掌握人工智能的核心算法,拥抱日新月异的智能世界吧。 与那些充斥着公式和术语的教材不同,本书利用丰富的图表、案例和习题,深入浅出地讲解人工智能的基本概念。你只需要具备高中数学基础知识,即可轻松阅读本书。读完本书之后,你将能亲手设计算法来预测银行交易风险,创造艺术作品甚至配置自动驾驶汽车。 主要内容 ●各种人工智能算法的实践场景 ●帮助决策的智能搜索算法 ●受生物学启发的算法簇 ●机器学习与神经网络 ●强化学习 与Q-learning
《巧用ChatGPT做跨境电商》从跨境电商市场概况讲起,介绍了ChatGPT在不同电商模块中的应用,带领读者们将选品调研、新品开发、亚马逊平台运营、独立站建设、海外推广、社交媒体营销等跨境电商各个环节利用ChatGPT完整地做一遍。 《巧用ChatGPT做跨境电商》分为12章。涵盖的内容有跨境电商和ChatGPT的结合、基于ChatGPT的选品调研、产品开发的ChatGPT应用、基于ChatGPT的Listing优化、基于ChatGPT的广告投放和优化、ChatGPT在邮件内容生成方面的应用、基于ChatGPT的物流库存管理、独立站品牌塑造与ChatGPT、用ChatGPT做Shopify独立站优化、谷歌推广与ChatGPT、用ChatGPT辅助站外Deal推广、ChatGPT在海外社交媒体营销方面的应用。 《巧用ChatGPT做跨境电商》内容通俗易懂、案例丰富、实用性强,特别适合跨境电商新人和有经验从业者阅读,包括产品开发、平台运营、海外推广、社媒营销等岗
《互联网大厂推荐算法实战》介绍了互联网大厂当前采用的一些前沿推荐算法,并梳理了这些算法背后的思想脉络与技术框架。 《互联网大厂推荐算法实战》总计10章,内容涵盖了推荐系统的基础知识、推荐系统中的特征工程、推荐系统中的Embedding、推荐系统的各组成模块(包括召回、粗排、精排与重排)所使用的算法技术、推荐算法实践中经常会遇到的难题以及应对之道(其中涉及多任务推荐、多场景推荐、新用户冷启动、新物料冷启动、评估模型效果、定位并解决问题等),最后还用一章的篇幅介绍了推荐算法工程师在工作、学习、面试时应该采取的做法。 《互联网大厂推荐算法实战》既适合推荐系统、计算广告、个性化搜索领域的从业人员阅读,也适合希望从事互联网算法工作的在校学生阅读。
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细