本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于巅峰时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《怎样解题:数学思维的新方法》经久不衰的畅销书出自一位著名数学家的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了《怎样解题:数学思维的新方法》的甜头,他们在《怎样解题:数学思维的新方法》的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
癌症、疑难慢性病如何治疗和康复?本书作者通过自身的经历,对治疗“ 症”提出了一些新思路、新理念和新方法。倡导文化的医学功能,是本书的主题,也是作者三十余年与癌症和平共处的经验总结。文化的力量,比我们想象的强大。
《怎样解题:数学思维的新方法》这本经久不衰的畅销书出自一位 数学家 G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。《怎样解题:数学思维的新方法》围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
教学是与教育相伴随的人类活动。随着社会的进步发展和对教育要求的不断提高,有效教学也日益成为人们关注的问题。有效教学的概念虽然是近些年来才在我国教育领域逐步流行起来,但从有效教学的理论层面看,它是一个与教学理论相伴生的隐性命题,因为,任何一种教学理论在学理追求上总是为有效教学辩护的,很难想象有哪一种教学理论将无效教学作为理论诉求。从这一角度看,任何教学理论都是有关有效教学的、理论。 当然,一种教学理论是否有效或者有效的程度,是要通过教学实践予以检验的。只是在检验理论的过程中,我们还需要判断理论实施的条件和边界问题,因为验证的结果与这些因素密切相关。在这个意义上,理论的有效性与其实施结果往往也不能简单地画上等号,在实际的教学改革中,理论与实践的关系是十分复杂的。本书的编写也
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
本书将带你 教室里的算术题和满是灰尘的教科书,去认识那些创造了无数奇迹的 的头脑。他们的故事告诉我们是什么激励和驱使他们做出了令人难以置信的发现。在这个过程中,你会遇到令人惊奇的、令人兴奋的,有时甚至是十分怪异的故事,这些故事以你从未想象过的方式将数学带入日常生活。 本书通过重要的数学家、重要的数学概念和各种形状来解释几何学的历史,展现几何学如何被用来解开自然的秘密。从简单的概念勾股定理 帮助埃及法老辛努塞尔特三世将肥沃的田地公平租赁给农民 开始,一直到当今研究的复杂几何图形,例如非欧几里得几何图形。它带领我们穿越 由数学构建的新宇宙,在这个奇妙的世界里,曲线是 直 的,甜甜圈和咖啡杯的形状 相同 。大量的彩色照片和手绘插图提供了直观形象的视觉示例。 本书适合对数学史,特别是几何
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为“论小于一个给定值的素数的个数”。在这篇论文的中间部分,黎曼作了备注——一个猜测,一个
《怎样解题:数学思维的新方法》是靠前有名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。《怎样解题:数学思维的新方法》是他专门研究解题的思维过程后的结晶。《怎样解题:数学思维的新方法》的核心是他分解解题的思维过程得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“ 赞的数学科普书”。 《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于**后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。整本书一气呵成, 适合对数学感兴趣的初高中生以及成人阅读。
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为“论小于一个给定值的素数的个数”。在这篇论文的中间部分,黎曼作了备注——一个猜测,一个 假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究 和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立?已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制 术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。在《素数之恋》中,极其明晰的数学阐
该书是匈牙利裔英国籍哲学家伊姆雷·拉卡托斯于20世纪60年代完成的一部探索数学史上新发现的产生过程的力作,主要阐述作者用5年时间收集的两个典型的数学案例,以及本书编者添加的拉卡托斯1961年在大学所撰博士论文的部分片段。 拉卡托斯是用对话体的形式进行写作的,他虚构了教师在课堂上与学生们讨论正多面体欧拉公式 V-E F=2 的猜想与发现、证明和反驳的全过程,形象地展现了数学史上对此问题进行研究探索的真实的历史图景,以此来挑战和批判以希尔伯特为代表的认为数学等同于形式公理的抽象、把数学哲学与数学史割裂开来的形式主义数学史观。这篇光辉论著旨在解决数学方法论的基本问题,以一种探索和发现的情境逻辑来代替形式主义和逻辑实证主义的抽象教条。正如拉卡托斯所说,非形式、准经验的数学的发展,并不只靠逐步增加的毋庸置
你以为无解的方程组真的无解吗?维特根斯坦说: 数学是各式各样的证明技巧。 如何用数学重新求证我们的人生?小到电饭锅为什么不会糊底,筷子夹不起来豌豆怎么办;大到如何 好地与他人相处,如何选择自己的职业。这些看似与数学无关的问题其实都蕴含着深刻的数学思维。勤能补拙的大数定律、权衡利弊的稀疏概念、貌合神离的条件独立、精益求精的数值解法、体现中庸之道的 小二乘法 数学公式和算法背后的智慧帮助我们 好地看清这个世界,并在遇到问题时提供 科学的视角,帮助我们做出 好的决策。很多事情的 终结果是我们不能预见的,但是,这个结果发生的概率是我们可以靠努力提高的。《心中有数》教你像电脑的处理器一样,快速、深层地剖析事物的 利与弊 ,在接受不 的前提下,通过数学思维权衡多方的利益,找到 的解题点。人生其实就是一
《自然哲学的数学原理》是艾萨克·牛顿的科学才华处于 时期所写的旷世巨著,是他“个人智慧的伟大结晶”。 牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。 在本书之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 本书标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。本书不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。