每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
《泛函分析》为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理的应用,第5章为概率论基础,第6章介绍Brownian运动,第7章为多复变引论,第8章介绍Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别强调它与调和分析的联系。 《泛函分析》可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
本书系统介绍了凸分析基础的五个核心部分。①涉及与凸集理论有关的线性子空间、仿射集、超平面、凸包、单纯形、闭包、内部、相对内部、凸集分离和支撑超平面等基本性质和一些重要定理。②涵盖了与凸锥有关的顶点锥、锥包、凸锥包、回收锥、共轭锥(正极锥)、负极锥、法锥与切锥、障碍锥、凸锥分离、多面体、多面锥和多面体集等基本性质和重要定理。③细述了实值(有限值)凸函数、可微凸函数、正常与非正常凸函数、复合凸函数、半连续凸函数、闭凸函数、连续凸函数和Lipschitz连续凸函数、共轭凸函数、支撑凸函数、规范凸函数、严格凸函数、半严格凸函数、显凸函数等性质和定理。④阐述了拟凸函数、半严格拟凸函数、显拟凸函数、伪凸函数、二次可微广义凸函数和广义单调性等广义凸函数的基本理论与性质。⑤讨论了凸函数的微分学基本理论,
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
本书以 Python 软件为基础, 详细介绍了数学建模的各种常用算法及其软件实现, 内容涉及高等数学、工程数学中的相关数学实验、数学规划、插值与拟合、微分方程、差分方程、评价预测、图论模型、多元分析、Monte Carlo 模拟、智能算法、时间序列分析、支持向量机、图像处理等内容, 既有对算法数学原理的详述, 又有案例和配套的 Python 程序. 本书含有 Python 快速入门基础, 可以帮助 Python 零基础的读者快速掌握Python 语言. 但对于没有其他任何编程语言基础的读者, 建议参考一些更加具体的 Python 相关书籍.
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本手册包含三部分内容:高等数学(微积分)、线性代数、概率论与数理统计.归纳总结了三部分内容中的定义、定理、公式、法则和方法.为便于读者学习和使用,在内容的编排顺序上与同济大学版高等数学保持一致;在目录上列出了手册中的重点条目;在每一章的后,提供了本章知识点之间的关联网络.本手册对正在学习高等数学、线性代数、概率论与数理统计和复习准备考研究生的读者都有极大参考价值;此外,对于曾经学过大学数学课程,并希望在短时间内迅速复习和回忆大学数学内容的读者也具有重要的参考价值.
本作业集为适应应用型本科人才的培养要求而编写,分为A、B两册. 本册为A册,内容涉及多元函数微分法及其应用(多元函数的基本概念,偏导数,全微分及其应用,微分法在几何上的应用,多元函数的极值及其求法)、重积分(三重积分的概念及其计算法,利用柱面坐标计算三重积分)、曲线积分与曲面积分(格林公式及其应用,对面积的曲面积分,对坐标的曲面积分)、无穷级数(常数项级数的概念和性质,常数项级数的审敛法,函数展开成幂级数)和微分方程(微分方程的基本概念,可分离变量的微分方程)。 此外,附录中还给出了习题的参考答案。
《预科数学基础教程》具备以下特点: (一)汉字认读与数学语言的结合 对于汉语基础较差,至多在中国仅仅接受过一个学期的汉语强化教学(约650学时)的预科生来说,对以汉语表述的数学上的很多专业词汇和常用语往往不知其音;或知其音,不知其意;或一知半解;所以必须让汉字教学和数学知识教学同时进行。在本书的每一节中,我们设计了“认一认”部分,专门用拼音和英文同时标注数学生词,以减少阅读和学习障碍,这是预科数学教学中不可缺少的一个环节。由于汉语数学表达的特殊性,预科生的阅读水平也是学习中国数学的一个拦路虎。为此,本教材专设“读一读”部分,使预科生能尽快适应中国数学语言的特点。 (二)直观图形与数学知识的结合 大多数留学生在本国都接触过相当于中国的初高中水准的数学课程,但以高考
本书是按照*大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合数年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书为上册,是一元函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当降低了学习难度,对部分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
本书是全国高等职业、高等专科教育《高职高等教学系列教材》(该系列教材2004年被评为“北京高等教育精品教材”)之一《高等数字》的学习辅导书,本书是配合主教材《高等教育》(第二版)的学习辅导书,本书依照教材的九章内容即函数·极限·连续,导数与微分,中值定理·导数应用,不定积分,定积分及其应用,微分方程,向量代数与空间解析几何,多元函数微分学,无穷级数而编写,与第二版教材相辅相成,同步使用。新版辅导教材每章按照教学要求、内容提要与解题指导、教材习题选解、自测题与参考解答四部分内容编写。教学要求指明学生应掌握和理解的知识点;内容提要是把重点内容和容易混淆的概念给出提示,解题指导是通过典型例题的解法教会学生数学思维方法,揭示出解题规律,并通过典型例题中的点评与说明,指出初学者易犯的错误,使
《高等代数》是高等代数课程的教材,是作者积40多年在北京大学讲授高等代数及相关课程,以及从事科研工作的经验和心得写成的,有许多独到的科学见解。《高等代数》鲜明地突出了 研究线性空间的结构及其态射(即线性映射) 这条主线,科学地安排讲授体系:**章线性方程组的解法;第二章行列式;第三章线性空间;第四章矩阵的运算;第五章一元多项式环;第六章线性映射;第七章双线性函数,二次型;第八章辟度量的线性空间;第九章n元多项式环。《高等代数》精心配备每一节的例题和习题。《高等代数》力求使高等代数与几何水乳交融,并按照数学的思维方式编写各章节的内容,使学生既比较容易地学到高等代数的知识,又从中受到数学思维方式的熏陶和训练,另夕卜《高等代数》还配有辅导资料《高等代数习题答案与提示》供读者参考。
《高等数学全程学·练·考》(同济大学·第五版)是一本学习与复习大学高等数学的辅导教材,主要是为大学非数学专业本科生与全国硕士研究生入学统一考试应试者系统地复习“高等数学”内容,以求巩固提高所学知识,取得良好的考试成绩而编写的。在选材原则与教学要求上,该书 根据原国家*(现*)组织制定的《全国普通高等学校工科本科专业教学计划》中的“高等数学课程教学基本要求”以及*制定的2004年全国硕士研究生入学统一考试数学考试大纲中“高等数学”部分的考试要求确定编写内容。 本书从国内外多种有关高等数学的教材及参考书中选取了众多具有代表性的典型例题,并精选了近十年来全国硕士研究生入学统考试题(包括数学一和数学二),对这些典型例题进行详尽的解题思路分析和方法技巧上的指导。对容易出现错误的地方给予提醒,这对于读者深
为适应2l世纪对高等职业技术应用型人才的新要求,提升高等数学在技能和职业指导中作用,我们编写了这本具有高职特色的高等数学教材。 本书作为*高等职业教育基础课规划教材之一,创新点在于把学法融入读本中,把培养学生的职业精神和职业意识写进了数学教材中,突显每章节的技术性内容。 本书包括一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、向量与空间解析几何、几何级数、常微分方程、数学建模、数学软件Mathematica九个知识模块,全部学完学时不少于120学时。前二个知识模块学完后,就可以根据专业选择所需数学知识模块。本书注重对综合知识的应用,突出一定升学应试能力,对参加“专升本”考试具有一定指导意义。 本书可作为高职高专理工类和财经类各专业的通用教材,也可作为其他各专业的参考资料,
邓俊谦主编的《工科高等数学(第2版高职高专 十一五规划教材)》是一部高职高专数学教材,既适 用于高职高专院校的工科类各专业,也适用于工科以 外的许多专业。本书主体内容有十章,分别为函数和 极限、导数与微分、导数的应用、积分及其应用、微 分方程、无穷级数、矩阵简介、向量、常见空间图形 及其方程、多元函数的偏导数与二重积分、MATLAB软 件使用简介。这些内容可以满足高职高专院校绝大多 数工科类专业及其他许多专业对高等数学的需求。各 院校不同的专业,在“必需、够用”为度的原则下, 可以方便地选取自己所需内容。 针对目前实际情况,作为附录,本书特地安排了 “基本初等函数”这一内容,以及常用基本初等函数 的图象、特性表,以方便教师根据需要选用,也给同 学需要时能够及时查阅带来便利。
为了帮助广大读者学好《高等数学》,扩大课堂信息量,提高应试能力,我们编写了这本具有工具书性质的《高等数学习题全解》。 本书与李心灿主编的《高等数学》(高等教育出版社,版)一书相配套。习题完全按照这本书的内容顺序来组织,针对每章习题都给出详尽的解答,注重一题多解。一些典型题给出了分析和注释,以帮助读者提高分析问题和解决问题的能力;对一些习题指出了读者易出错的地方,避免出错的方法,让读者听到课堂上无法听到的“弦外之音”。出版本书的目的是方便读者对照和分析。值得提醒的是,解题能力需要亲自动手,通过亲自的实践才能逐步锻炼出来,从而不断提高水平。
刘吉佑、赵新超、陈秀卿编*的《高等数学解题 法(第2版)》编写目的是为读者学习高等数学、提高 解题技能和熟练程度提供帮助。全书收录的题目比较 典型,也有一定难度,总共归结为二十九讲。内容包 括预备知识、*限与连续、一元函数微分学、一元函 数积分学、多元函数微分学、多元函数积分学、无穷 级数、常微分方程等。每一讲分为内容要点、例题选 讲、练习题和答案与提示四个模块。例题选讲给出了 比较详细的解答或证明,而练习题则只给出答案或提 示,以便给读者留有充分的发挥空间。对于一些特别 需要引起读者重视的解题方法或解题思路,书中加以 评注 。本书内容覆盖了理工科大学高等数学课程 的基本要求和国家研究生数学入学考试的基本要求。 本书可作为 高等数学解题法 课程的教材和学 生学习高等数学的参考书,也可作为参加硕士研
《线性回归的相对有效性和估值漂移》根据作者多年从事测量数据处理的教学与研究工作成果撰写而成。《线性回归的相对有效性和估值漂移》讨论和确定了常用稳健估计方法的相对有效性,以及总体*小二乘法与*小二乘法、稳健总体*小二乘法与稳健*小二乘法线性回归在不同误差模型影响下的相对有效性;提出了参数估计方法线性回归估值漂移的概念,讨论了*小二乘法和总体*小二乘法线性回归估值漂移的相关问题,建立了判定估值漂移的基本方法;讨论了一元线性回归自变量的优化、可线性化的一元非线性回归中直接观测值与间接观测值回归的差异和总体*小二乘法验后方差因子的实用性。