本书介绍线性偏微分算子的现代理论,主要论述拟微分算子和Fourier积分算子理论,同时也系统地讲述了其的基础——广义函数理论和Sobolev空间理论。本书分上、下两侧。上册着重讨论拟微分算子及其在偏微分方程经典问题(Cauchy问題和Dirichiet问题)上的应用。下册将主要介绍Fourier积分算子理论和佐藤的超函数理论。
花拉子米的《算法》与《代数学》是他的代表性著作,也是数学史上具有重要价值的著作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。
本书系统和全面地介绍了组合优化的基本理论和重要算法。全书共分22章,内容既包括图论、线性和整数规划以及计算复杂性等基础部分,又涵盖了组合优化中若干重要问题的经典结果和最新进展.除了对理论的深刻讨论外,书中还提供了丰富的研究文献和具有挑战性的习题。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
本书的意图就是利用Fourier限制型估计、可微函数空间的Littlewood-Paley刻画、Fourier局部化技术、Bourgain的能量归纳技术与Tao的频率局部化方法,给出了非线性波动方程(临界及次临界Klein-Gordon方程、具双Schrodinger结构的高阶Klein-Gordon方程)的经典研究与现代研究的统一处理.
本书研究有限维系统和无穷维系统的动态补偿问题,主要包括:执行动态补偿、观测动态补偿和干扰动态补偿。对于有限维系统,动态补偿理论将实现自抗扰控制和内模原理的优化组合,提出新的干扰估计方法,不但能利用系统的在线信息,而且还能够充分利用系统和干扰的先验动态信息。对于无穷维系统,动态补偿理论可以有效解决三大类问题:(i)PDE-ODE和ODE-PDE串联系统的控制和观测问题;(ii)系统输入时滞和输出时滞的补偿问题;(iii)系统的输入干扰和输出干扰的估计问题。本书讨论的动态补偿理论改进了偏微分方程的backstepping方法,并将自抗扰控制推广到了无穷维系统。
本书分上下册出版.上册包括前六章和一个附录,可作为综合大学和师范院校数学、物理和化学专业高年级学生的教材,主要内容是,群论的基本概念,群在集合上的作用及其应用,群的构造理论,幂零群和村群,可解群和有限群表示论等。 本书用尽量少的篇幅介绍有限群论的基本知识和方法,为了应用特别突出方法,本书包含相当数量的习题.书末还有解答和提示。 本书适于大学数学、物理、化学高年级学生、研究生、教师和有关科技工作者阅读。
The focus of this book is geometric properties of general sets and measures in Euclidean spaces. Applications of this theory include fractal-type objects, such as strange attractors for dynamical systems, and those fractals used as models in the sciences. The author provides a firm and unified foundation for the subject and develops all the main tools used in its study, such as covering theorems, Hausdorff measures and their relations to Riesz capacities and Fourier transforms. The last third of the book is devoted to the Besicovitch-Federer theory of rectifiable sets, which form in a sense the largest class of subsets of Euclidean space possessing many of the properties of smooth surfaces.
本书介绍代数K群的结构和性质。我们从一个环R的K群K0(R),K1(R),K2(R)开始,接着构造Quillen的高次K群,介绍Waldhausen范畴的K理论和概形的K群。为了方便学习,我们补充了所需的代数和同伦代数的基本知识,并介绍了模型范畴理论。 介绍了Grothendieck的原相理论,并叙述了利用K理论来表达关于代数圈的一组为 数学家所亟待解决的问题。