数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅰ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅰ)》包含整数的性质、数的进位法、一部分不定方程和一次同余式及解法四章。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅰ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(Ⅱ)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。《数论经典著作系列:初等数论(Ⅱ)》为《初等数论(I)》的后续,介绍了剩余系、数论函数、三角和等方法。每章后有习题,并在书末附有全部习题解答。《数论经典著作系列:初等数论(Ⅱ)》写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本书为组合数学的经典教材,共分为六章。书中列举了大量组合问题和例题,并尽可能使用初等方法来解决它们,以使广大读者能够掌握组合论的思想和方法。本书内容丰富,叙述由浅入深,每章都有习题,另附习题解答。 本书对初学组合论的读者是一本较好的入门书,对于中学教师、大学理工科学生和广大的工程技术人员以及从事科学研究的工作者也是一本较好的参考书。
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括第1章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有全部习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
本书主要涉及初等数论的相关知识,共选编了62道较经典的初等数论题目和它们的解答,并在后面列出了所需要的定义和定理。通过这些题目和解答,能增强读者解决数学问题的能力。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
这是一本介绍组合数的书.高中阶段已经学习过排列与组合的基础知识,对于排列与组合有了初步的了解,但是还有许多问题,例如,组合恒等式如何证明?怎样利用组合数解决一些数列的有关问题?怎样确定组合数的奇偶性?怎样利用组合数进行因式分解? 怎样利用组合数研究不定方程的整数解的个数?怎样利用组合数计算空间分割的数目等.这些问题大家接触的并不多,但是每个中学生又都能解决,这本书就要对这样一些与组合数有关的数学问题做一些粗浅的介绍,以引起大家对组合数研究的兴趣.
陈建明、曾明、刘国荣编著的《离散数学(第3版)》系统地介绍了各种离散的数学结构,其中包括数理逻辑、集合论、代数系统和图论的基本内容。本书以证明方法和证明过程为重点,以关系的理念贯穿全书。在编写过程中力求内容精练、重点突出、深入浅出,有助于读者自我学习。书中内容可满足计算机专业后继课程的需要。 《离散数学(第3版)》可作为计算机软件专业、计算机通信专业、计算机制造专业和各类相关信息专业的本科生“离散数学”课程的教科书及教学参考书,同时也可供有关考研人员和自考人员学习和参考。
本书是第二版,较版有很大的改进。证明更加清晰、详尽。由于多变形对称群和多项式的Galois群的相似性,书中以平面上的多边形对称群为开始。这种相似性可以帮助读者理解书中的有关理论知识。书中也包含了一些新的定理,例如:不可约情形。书中用完整的证明和大量练习清晰、有效地讲述了Galois理论。包括:立方、四次方公式的Galois理论的基本理论;五次Galois大定理的不可解性;立方和四次方Galois群的计算。补充了群论、尺规结构和Galois的早期历史。本书是一本Galois理论简明教程,很适合研究生一年级作为教材学习;也是一本很理想的课外学习书。目次:对称;环;同态和理想;商环;域上的多项式环;素理想和*理想;不可约多项式;经典多项式;分裂域;Galois群;单位根;根式可解性;特征的独立性;Galois扩张;Galois理论的基本定理;应用;Galois大定理;
《模曲线导引(第2版)》的目的在于介绍模形式的几何理论的背景知识。本书可供数学系的研究生作为教材,也可以供从事数论、代数几何等专业的数学工作者使用。作者在2002年出版本书版之后,近些年又做了大量的修订,使得该书的内容更完善更前沿。
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。*后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
numbers measure size, groups measure symmetry. the firststatement comes as no surprise; after all, that is what numbers arefor. the second will be exploited here in an attempt to introducethe vocabulary and some of the highlights of elementary grouptheory. a word about content and style seems appropriate. in this volume,the emphasis is on examples throughout, with a weighting towardsthe symmetry groups of solids and patterns. almost all the topicshave been chosen so as to show groups in their most natural role,acting on (or permuting) the members ora set, whether it be thediagonals of a cube, the edges of a tree, or even some collectionof subgroups of the given group. the material is divided intotwenty-eight short chapters, each of which introduces a new resultor idea.a glance at the contents will show that most of themainstays of a first course arc here. the theorems of lagrange,cauchy, and sylow all have a chapter to themselves, as do theclassifcation of finitely generated abelian groups, t
本书是山东省省级精晶课程“离散数学”的主讲教材,是全国教育科学“十一五”国家课题“我国高校应用型人才培养模式研究”重点子课题“应用型本科院校计算机专业课程体系构建研究”的研究成果。 本书系统讲解离散数学基础知识和应用方法,由六部分构成:部分数理逻辑,内容包括命题逻辑和谓词逻辑;第二部分集合论,内容包括集合的基本知识、排列与组合、递推关系、集合论在命题逻辑中的应用、关系、函数、经典集合的扩展等;第三部分数论,内容包括整除和同余;第四部分代数系统,内容包括代数系统的基本概念及性质、半群、独异点、群、环、域、布尔代数等;第五部分图论,内容包括图的基本概念及矩阵表示、几类重要的图、 短路径、关键路径等;第六部分计算机科学中的应用,内容包括形式语言与自动机、纠错码等。 本书在内容安排
本书是与科学出版社出版的《线性代数简明教程(第二版)》(陈维新 编著)相配套的学习辅导用书,主要面向使用该教材的学生,也可供使用该教材的教师作为参考。本书分三大部分:*部分为线性代数同步练习,根据《线性代数简明教程(第二版)》的章节顺序和教学进度,选出适量的习题供学生练习;第二部分为提高篇,包括按章节内容的提高题和综合提高题;第三部分为综合练习,可以为同学们复习迎考提供借鉴,同时也可为教师命题提供参考。
埃瓦里斯特·伽罗华是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论奠定了基础;在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。伽罗华死于一次近乎自杀的决斗,引起了后人的种种猜测。可能是被保皇派或警探所激怒而致,时年21岁。他被公认为是数学史上两个*浪漫主义色彩的人物之一。这本《伽罗瓦对应导论(第2版)》是英文版。
This exposition of Galois theory was originally going to be Chapter I of the continuation of my book Ferrnat's Last Theorem, but it soon outgrew any reasonable bounds for an introductory chapter, and I decided to make it a separate book. However, this decision was prompted by more than just the length. Following the precepts of my sermon "Read the Masters!" [E2], Imade the reading of Galois' original memoir a major part of my study of Galois theory, and I saw that the modern treatments of Galois theory lacked much of the simplicity and clarity of the original. Therefore I wanted to write about the theory in a way that would not only explain it, but explain it in terms close enough to Galois' own to make his memoir accessible to the reader, in the same way that I tried to make Riemann's memoir on the zeta function and Kummer's papers on Fermat's Last Theorem accessible in my earlier books, [Eli and [E3]. Clearly I could not do this within the confines of one expository chapter
该书稿是《线性代数(经管类?第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
随着计算机技术的飞速发展和广泛应用,许多实际问题得以通过离散化的数值计算而得到定量的解决。而线性代数正是实际问题离散化的数学基础.不仅如此,线性代数在训练学生的逻辑思维和推理能力、分析和解决实际问题的能力方面也起着重要的作用。因此,线性代数已成为理工、经济、工商管理等各专业大学生必修的重要数学基础课之一。 由于历史原因,我国线性代数的教学内容与课程体系受前苏联的影响很深。我国20世纪五六十年代的线性代数教材往往是高等代数教材的缩写本,理论性很强,难度较大,不太适合普通高校工科专业使用。 20世纪80年代初,同济大学编写了供普通高校工科专业使用的《线性代数》。该教材较好地把握了工科线性代数课程教学的基本要求,内容选择适当,难度适中,论述通俗易懂,例题与习题较为典型,一经出版