本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
本书介绍线性偏微分算子的现代理论,主要论述拟微分算子和Fourier积分算子理论,同时也系统地讲述了其的基础——广义函数理论和Sobolev空间理论。本书分上、下两侧。上册着重讨论拟微分算子及其在偏微分方程经典问题(Cauchy问題和Dirichiet问题)上的应用。下册将主要介绍Fourier积分算子理论和佐藤的超函数理论。
无
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
花拉子米的《算法》与《代数学》是他的代表性著作,也是数学史上具有重要价值的著作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。
本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
*部分讲曲线,用解析的和代数的两种观点,讲得较为深入;第二部分讲代数簇和概形的基础理论。该书是Springer出版社数学百科全书中的分册,有很高的学术影响和市场价值。
Thisvolumeisacompletelynewversionofthebookunderthesametitle,whichappearedin1981asVolume9intheseries"ProgressinMathematics,"andwhichhasbeenoutofprintforsometime.Thatbookhaditsorigininnotes(takenbyHassanAzad)fromacourseonthetheoryofLinearalgebraicgroups,givenattheUniversityofNotreDameinthefallof1978.Theaimofthebookwastopresentthetheoryoflinearalgebraicgroupsoveranalgebraicallyclosedfield,includingthebasicresultsonreductivegroups.Adistinguishingfeaturewasaself-containedtreatmentoftheprerequisitesfromalgebraicgeometryandcommutativealgebra.
微分几何在现代理论物理和应用数学中扮演着越来越重要的角色。本书给出了在理论物理和应用数学中很重要的几何知识的引入,包括,流形、张量场、微分形式、联络、辛几何、李群作用、族以及自旋。 本书以一种非正式的形式写作,作者给出了1000多例子重在强调对一般理论的深刻理解。本书将要为读者很好的学习拉格郎日现代处理方法、哈密顿力学、电磁、规范场,相对论以及万有引力做充足的准备。 本书很适合作为物理、数学以及工程专业的高年级本科生以及研究生的教程,也是一本很难得自学教程。
C*-代数和有限维逼近(影印版)
无
《现代数学基础丛书 典藏版21:线性代数群表示导论(上册)》阐述线性代数群的表示理论,包括由Chevalley,Borel,Steinberg等人在50-60年代建立起来的经典理论,以及70年代以后这一理论的新发展,并提出一些未解决的问题和一些猜想。全书的重点在代数群表示理论的新发展上,特别着重于上同调方法的应用以及由此得出的一系列深刻的结果。 《现代数学基础丛书 典藏版21:线性代数群表示导论(上册)》共分六章,上册包括三章,分别是:经典表示理论,仿射群概形与超代数,上同调方法。
佩捷、郭梦舒编著的《从华林到华罗庚--华林问题的历史》共分三编:编为华林问题;第二编为迪利克雷除数问题;第三编为从哥德巴赫到陈景润。 详细阐述了华林问题的历史,以及哥德巴赫猜想从产生到陈景润解决“1+2”问题的历史进程。 本书适合高等学校数学及相关专业师生使用,也适用于数学史爱好者。
该书是Springer的AlgorithmsandComputationinMathematics丛书系列第21卷,作者多年来从事离散数学,代数拓扑,理论计算机科学。组合代数拓扑是代数拓扑和离散数学的交叉。属于"反映学术前沿进展的优秀学术著作"这一类。比较专门,本书的读者可以是几何,拓扑和代数方向的数学工作者和研究生。
佩捷、王忠玉、欧阳维诚编著的《从费马到怀尔斯——费马大定理的历史》介绍了关于费马大定理的历史,并详细介绍了证明费马大定理的艰难历程。 《从费马到怀尔斯——费马大定理的历史》适合大中学数学爱好者参考阅读。
《数学奥林匹克不等式证明方法和技巧 上册》 本册共包括十三章:章比较法证明不等式,第二章二元、三元均值不等式的应用,第三章均值不等式的应用技巧,第四章柯西不等式及其应用技巧,第五章联用均值不等式和柯西不等式证明不等式,第六章柯西不等式的推广、赫德尔不等式及其应用,第七章不等式 及其推广——米尔黑德定理的应用,第八章舒尔不等式的应用,第九章排序不等式与切比雪夫不等式及其应用,第十章琴生不等式及其应用,第十一章放缩法证明不等式,第十二章反证法证明不等式,第十三章调整法与磨光变换法证明不等式。 本书适合于数学奧林匹克竞赛选手、教练员参考使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及不等式研究爱好者参考使用。 本套书还有: 《数学奥林匹克不等