本书介绍线性偏微分算子的现代理论,主要论述拟微分算子和Fourier积分算子理论,同时也系统地讲述了其的基础——广义函数理论和Sobolev空间理论。本书分上、下两侧。上册着重讨论拟微分算子及其在偏微分方程经典问题(Cauchy问題和Dirichiet问题)上的应用。下册将主要介绍Fourier积分算子理论和佐藤的超函数理论。
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
无
本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
花拉子米的《算法》与《代数学》是他的代表性著作,也是数学史上具有重要价值的著作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。
本书针对应用科学中的11个重要的非线性发展方程,介绍差分求解方法的**研究成果,包括微分方程问题解的守恒性和有界性分析、差分方法的建立、差分解的守恒性和有界性分析、差分解的存在性分析、差分解收敛性的证明、差分格式的求解等内容。建立的差分求解格式包括非线性差分格式和线性化差分格式。这11个非线性发展方程如下:Burgers方程、正则长波方程、Korteweg-deVries方程、Camassa-Holm方程、Schr.dinger方程、Kuramoto-Tsuzuki方程、Zakharov方程、Ginzburg-Landau方程、Cahn-Hilliard方程、外延增长模型方程和相场晶体模型方程。
本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
佩捷、郭梦舒编著的《从华林到华罗庚--华林问题的历史》共分三编:编为华林问题;第二编为迪利克雷除数问题;第三编为从哥德巴赫到陈景润。 详细阐述了华林问题的历史,以及哥德巴赫猜想从产生到陈景润解决“1+2”问题的历史进程。 本书适合高等学校数学及相关专业师生使用,也适用于数学史爱好者。
C*-代数和有限维逼近(影印版)
佩捷、王忠玉、欧阳维诚编著的《从费马到怀尔斯——费马大定理的历史》介绍了关于费马大定理的历史,并详细介绍了证明费马大定理的艰难历程。 《从费马到怀尔斯——费马大定理的历史》适合大中学数学爱好者参考阅读。
微分几何在现代理论物理和应用数学中扮演着越来越重要的角色。本书给出了在理论物理和应用数学中很重要的几何知识的引入,包括,流形、张量场、微分形式、联络、辛几何、李群作用、族以及自旋。 本书以一种非正式的形式写作,作者给出了1000多例子重在强调对一般理论的深刻理解。本书将要为读者很好的学习拉格郎日现代处理方法、哈密顿力学、电磁、规范场,相对论以及万有引力做充足的准备。 本书很适合作为物理、数学以及工程专业的高年级本科生以及研究生的教程,也是一本很难得自学教程。
本书的意图就是利用Fourier限制型估计、可微函数空间的Littlewood-Paley刻画、Fourier局部化技术、Bourgain的能量归纳技术与Tao的频率局部化方法,给出了非线性波动方程(临界及次临界Klein-Gordon方程、具双Schrodinger结构的高阶Klein-Gordon方程)的经典研究与现代研究的统一处理.
《现代数学基础丛书 典藏版21:线性代数群表示导论(上册)》阐述线性代数群的表示理论,包括由Chevalley,Borel,Steinberg等人在50-60年代建立起来的经典理论,以及70年代以后这一理论的新发展,并提出一些未解决的问题和一些猜想。全书的重点在代数群表示理论的新发展上,特别着重于上同调方法的应用以及由此得出的一系列深刻的结果。 《现代数学基础丛书 典藏版21:线性代数群表示导论(上册)》共分六章,上册包括三章,分别是:经典表示理论,仿射群概形与超代数,上同调方法。
Thisvolumeisacompletelynewversionofthebookunderthesametitle,whichappearedin1981asVolume9intheseries"ProgressinMathematics,"andwhichhasbeenoutofprintforsometime.Thatbookhaditsorigininnotes(takenbyHassanAzad)fromacourseonthetheoryofLinearalgebraicgroups,givenattheUniversityofNotreDameinthefallof1978.Theaimofthebookwastopresentthetheoryoflinearalgebraicgroupsoveranalgebraicallyclosedfield,includingthebasicresultsonreductivegroups.Adistinguishingfeaturewasaself-containedtreatmentoftheprerequisitesfromalgebraicgeometryandcommutativealgebra.
本书是一部很有影响力的研究生教材,全面介绍了代数的基本概念。本书的突出特点是书中不但保留了代数的经典内容,同时也介绍了从 范畴理论和同调代数思考的学习方式,各章有大量习题。本书可做为研究生教材,学时一年。 目次:(一)代数基本内容:群;环;模;多项式。(二)代数方程:代数 扩张;伽罗瓦理论;环的扩张;超越扩张;代数空间;诺特环和模;实域;*值。(三)线性代数和表示:矩阵映射和线性映射;单同态表示;双线性型结构;张量积;半单性;有限群表示;交错积。(四)一般同调理论;有限自由解。 读者对象:数学专业的研究生及相关专业的研究人员。