张恭庆、郭懋正编著的《泛函分析讲义(下)》是一部泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wiener测度和Hilbert空间上的Gauss测度。全书共分四章: Banach代数;无界算子;算子半群以及无穷维空间上的测度论。本书注意介绍泛函分析理论与数学其他分支的密切联系,给出丰富的例子和应用,以培养读者运用泛函分析方法解决问题的能力。 本书适用于理工科大学数学系、应用数学系高年级本科生、研究生阅读,并且可供一般的数学工作者、物理工作者和科学技术人员参考。
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范学校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。全书分三册,本册内容包括多元函数及其微分学、多元函数微分法的应用、含参变量积分、重积分、曲线积分和曲面积分及各种积分之间的关系。书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学。每章末都有小结,对该章的主要内容作了归纳和总结,并配有复习题,方便学生系统复习。书中还配有一些概念、定理和方法的视频讲解,内容呈现方式更加生动直观。
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
《数学分析习题课讲义1》主要针对华东师范大学编写的《数学分析》教材第四版而编写的学习指导书,主要使用于初学者学习分析时学习指导,考研同学的复习,年轻教师教学参考。 本书作者结合十余年讲授数学分析、考研辅导和全国数学竞赛的经验,主要对书中内容的知识点简明归纳、课后习题进行了系统归类,对相当一部分题目给出了多种解法或备注、增加适量的有利于学生理解内容掌握方法的题目。对同类书中的部分题解法单一、解法不自然、解法不严格甚至有错误题目进行了详细打磨。
本书是大学生学习"数学分析"课的辅导教材,分为上、下两册,共七章.上册三章,内容包括:极限与连续,一元函数微分学,一元函数积分学;下册四章,内容包括:级数,多元函数微分学,多元函数积分学,典型综合题分析.在每一节中,设有内容提要、典型例题分析.通过精选的典型例题进行分析、讲解与评注,析疑解惑. 本书许多题的解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩.本书的另外一大持色是:辅导怎样"答"题的同时,还 通过"敲条件,举反例"等方式引导学生如何"问"问题,就是如何给自己"提问题". 本书可作为综合大学、理工科大学、高等师范院校各专业大学生学习数学分桥的学习辅导书.对新担任数学分析
吉米多维奇的《数学分析习题集》是一本国际知 名的著作。该书 内容丰富,由浅入深,涉及的内容涵盖了《数学分析 》的全部命题。同 时,该书难题多,许多题目的难度已经超出对同学们 的要求,以至于许 多同学望而却步。为了帮助广大同学更好地掌握《数 学分析》的基本 概念,综合运用各种解题技巧和方法,提高分析问题 和解决问题的能 力,由毛磊、滕兴虎、寇冰煜、张燕、李静等编著的 《吉米多维奇数学分析习题全解(3)》以俄文第13版 为基础,对习题集中的5000道习题逐一进行 了解答。
《数学分析(一)(第二版)》介绍了数学分析的基本概念、基本理论和方法,包括一元函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。《数学分析(一)(第二版)》共分三册。本册内容包括实数与数列极限、函数与函数极限、函数的连续性、微分与导数、导数的应用、实数集的稠密性与完备性。《数学分析(一)(第二版)》列举了大量例题来说明相关定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学。每章末都有小结,并配有复习题,对该章的主要内容进行归纳和总结,方便学生系统复习。通过二维码技术《数学分析(一)(第二版)》配有一些概念定理和方法的视频讲解,内容呈现方式更加生动直观。
《数学分析习题集》是一本国际知名的著作。该书内容丰富,由浅入深,涉及的内容涵盖了《数学分析》的全部命题。同时,该书难题多,许多题目的难度已经超出对同学们的要求,以至于许多同学望而却步。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,这本《吉米多维奇数学分析习题全解(2)》以俄文第13版为基础,对习题集中的5000道习题逐一进行了解答。 本书由毛磊、滕兴虎、寇冰煜、张燕、李静等可作为数学专业同学学习《数学分析》的参考书,又可以作为其他理工科同学学习《高等数学》、《微积分》的参考书,同时也可以作为各专业同学考研复习时的参考书。
马昌凤编著的《现代数值分析》阐述了现代数值分析的基本理论和方法,包括数值分析的基本概念、非线性方程求根、解线性方程组的直接法和迭 代法、插值法与小二乘拟合、数值积分和数值微分、矩阵特征值问题的计算、常微分方程初值问题的数值解法以及蒙特卡伦方法简介等。书中有丰富 的例题、习题和上机实验题。本书既注重数值算法的实用性,又注意保持理论分析的严谨性,强调数值分析的思想和原理在计算机上的实现;选材恰当 。系统性强,行文通俗流畅,具有较强的可读性。 《现代数值分析》的建议课时为72课时(其中含上机实验12课时),可作为数学与应用数学、信息与计算科学、计算机科学与技术以及统计学专业等 本科生 数值分析 课程的教材或教学参考书,也可以作为理工科研究生 数值分析 课程的教材或教学参者书。
《数学分析习题课讲义3》是与华东师范大学数学系编写的教材《数学分析(第四版)》配套的学习辅导书,内容安排上与教材相一致,是在作者近二十年讲授“数学分析”课程和参与考研辅导以及全国大学生数学竞赛辅导所积累的大量教学资料的基础上多次修订而成的. 本书共分三册,按节进行编写,每节先梳理知识结构,再按照题目的类型和难度对教材中的习题进行重新编排并给予详细解答. 很多题目提供了多种解法并加以分析和备注,有利于学生理解数学知识蕴涵的数学思想,建构知识的内在联系. 本书还选取了一些教材之外的有代表性的习题,以拓宽知识面,也有利于夯实学习后续专业课的基础. 本书可供高等院校数学各专业学生学习“数学分析”课程使用,也可作为考研学生的复习资料,还可作为“数学分析”课程教师的参考书.
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
本教材在保留了部分传统的数学分析内容外,新增加了测度论、勒贝格积分、微分流形和流形上的积分等国外教材上常见的内容,这在国内教材上是不多见。本书的出版对高校数学分析课程改革和与国外数学分析教材接轨将起到示范和推动作用。上册内容为:集合与映射,实数与复数,极限,连续函数类,一元函数微分学,一元函数的黎曼积分。
My primary goal in writing Understanding Analysis was to create an elementary one-semester book that exposes students to the rich rewards inherent in taking a mathematically rigorous approach to the study of functions of a real variable. The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. There is a tendency, however, to center an introductory course too closely around the familiar theorems of the standard calculus sequence. Producing a rigorous argument that polynomials are continuous is good evidence for a well-chosen definition of continuity, but it is not the reason the subject was created and certainly not the reason it should be required study. By shifting the focus to topics where an untrained intuition is severely disadvantaged (e.g., rearrangements of infinite series, nowhere-differentiable continuous functions, Fourier series), my intent is to restore an intellectual liveliness to this course by offering the beginning student acce
本书是一本非常优秀的图论入门书,自从1972年出版版以来,深受广大读者的欢迎,不断再版,1996年已经出版了第四版。本书用浅显易懂的语言,大量的实例和练习介绍了图论的基本知识以及横贯和拟阵等一些比较艰深的组合数学知识,读来通俗易懂,引人入胜。书中包含了大量的图论应用实例,不管是对于数学专业的师生还是对于工程专业的科技工作者都有很大的吸引力。目次:引言;概念和离子;路和圈;树;平面性;图的着色;有向图;匹配,婚姻定理和Menger定理;拟阵。
随着当代科学技术的日益数学化,许多工科专业对数学的需求与日俱增,在基础课设置上,越来越不满足于传统的高等数学,希望用数学分析取代高等数学。另一方面,数学分析作为数学专业最重要的基础课,初学一遍,往往难以学深弄透、融会贯通。基于上述原因,我们兼顾两方面的需要,编写了这本数学分析选讲,取材大体基于而又略深于高等数学和数学分析教材,可以视为其自然引申、扩充、推广、交融和深化,其中不少内容是其他书上没有的或不易找到的,希望使学生学到一些以前未学而又不难学会的知识和方法、得到一次综合训练和充实提高的机会,在新的起点上温故知新,进一步夯实基础、巩固知识、强化训练、开阔视野、融会贯通、掌握方法、提高能力。《BR》本书注重理论、方法和实例的有机结合,例题、习题丰富多样(附有部分习题答案),既