本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定
《数值分析(第3版)》着重介绍适合于电子计算机上采用的数值计算方法及其理论,内容包括误差分析、非线性方程求根、线性代数方程组数值解法、多项式插值与函数逼近、数值积分与数值微分、常微分方程数值解法、偏微分方程数值解法等。 《数值分析(第3版)》内容覆盖了*工科研究生数学课程教学指导小组所制订的工科硕士生数值分析课程教学基本要求,同时还增加了一些工科专业所需要的内容,如机器数系、有理函数插值、振荡函数积分等。书中对各种计算方法的构造思想都作了较详细的阐述,对稳定性、收敛性、误差估计以及算法的优缺点等也作了适当的讨论。 《数值分析(第3版)》还挑选了部分东南大学工科研究生结合各自专业自选课题的计算实习,以此作为《数值分析(第3版)》各章的应用实例。 《数值分析(第3版)》可作
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
今天不等式在数学领域发挥着显著的作用,而且已经形成了一个非常活跃、引人注目的研究领域。与之前的研究不等式的书相比,该书讲述了许多新的内容,即使在对经典的不等式的讲述中,也添加了许多新研究。作者力求*限度的详尽,而且给出了尽可能多的相关参考资料。目次:引言;普通不等式;特殊不等式;人名索引;主题索引。
本书较为系统地总结了Finsler流形之间的调和映射、Finsler极小子流形及Finsler-Laplace算子*特征值等有关方面的基本理论和**成果。为了自成体系,同时也为了方便读者查阅,本书在第1章先概要介绍Finsler几何的基础知识、常用的公式和方法。此外,本书还弥补和修正了相关论文中的一些错漏之处,改进和完善了部分结果。《BR》 全书共分8章,第1章主要介绍Finsler流形的基础知识。第2章和第3章丰要介绍Finsler调和映射(包括调和映射和复Finsler调和映射)的相关概念、公式、性质和应用。第4章和第5章主要介绍Finsler流形上的各种Laplace算子及其特征值估计。第6~8章主要介绍Finsler流形的HT-极小子流形和BH-极小子流形的性质及其分类。
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容主要涉及多变量微积分,全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
本书讲述数学分析的基本概念、原理与方法,分为上、下两册.上册内容包括函数、数列极限、函数极限、函数的连续性、导数与微分、微分中值定理及其应用、不定积分、定积分、定积分的应用、广义积分等.下册内容包括数项级数、函数项级数、幂级数与Fourier级数、多元函数的极限与连续性、多元函数微分学、隐函数定理及其应用、含参量积分、重积分、曲线积分、曲面积分等.本书每节配有适量习题,每章还配有总习题,分为A与B两组.书末有习题答案与提示,其中难度大的证明题有较详细的提示,以方便读者在自主学习时查看.
本教材分上、下两册,本书为下册.内容包括数项级数、函数项级数与函数列、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数、含参变量的积分、重积分、曲线积分、曲面积分.本书在章节安排上,由浅入深,逐步展开,编排合理;注重对基础知识的讲述与基本能力的训练;结合微积分的发展史与几何意义引进相关的概念与定理,具有启发性;注重新概念、新定理以及精彩定理证明的评注;证明详细,难点处理透彻,例题丰富,便于教学和读者自学.
《数学分析的思想与方法》通过多角度、深层次、全方位地探讨了数学分析学科的思想方法,全书共分为六部分:部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第二部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第三部分对数学分析内容体系中所蕴含的哲学思想进行了挖掘与分析;第三部分通过大量的事例对数学分析内容中所常用的数学思想进行了举例与分析;第四部分对数学美与数学分析中的美学思想进行了论述与分析;第五部分对微积分创立过程中数学家的思想和方法进行了整理与分析;最后一部分以附录的形式将古代数学家解决问题的方法进行了举例与说明。
空间与映射的分类设想是点集拓扑学的主要研究方向之一。本书利用映射方法系统论述广义度量空间的基本理论,总结了20世纪的年代以来空间与映射理论的重要研究成果,特别包含了国内学者的研究工作,内容包括广义度量空间的产生、度量空间的映象和广义度量空间类等3章和2个附录。第二版在版的基础上,对部分内容作了修饰,补充了广义度量空间理论的若干新进展,适当调整了附录和参考文献,列举了一些尚未解决的问题供有兴趣的读者研究。 本书可以作为广义度量空间理论学习或研究的参考书,可供大学数学系高年级学生、研究生及研究工作者使用。
陈志华编著的《近代分析基础(第2版)》是一本综合性的分析教材,全书分为五章:分别为一般拓扑、线性泛函分析、sobolev空间、线性算子的谱分析及非线性分析简介,其中每章均独立成篇而相互又有关联。 《近代分析基础(第2版)》主要读者对象为数学专业高年级学生与硕士研究生,同时也可供其他理工科高年级学生、研究生、青年教师及相关工程技术人员学习参考之用。本书的取材与编写都充分考虑使本书能适于自学,为有兴趣于此的读者提供一本适于自学的读本。
本书概述了回归分析的概念、分类、简单直线、曲线回归分析和多重线性回归分析、复杂固定模式和非固定模式曲线回归分析、单水平和多水平多重曲线回归分析。每种回归分析方法都介绍了分析目的、数据结构(问题与数据)、切入点(分析与解答)、统计模型(计算原理)、分析步骤(含SAS实现)。在固定模式单水平非线性回归分析中,涉及的统计模型有:二项型和三项型指数曲线模型,Logistic、Gompertz和Richards生长曲线模型,Bleasdale?Nelder、Halliday和Farazdaghi?Harris产量密度曲线模型;在非固定模式单和多水平多重非线性回归分析中,涉及的统计模型有:二值结果变量定性资料单、多水平Logistic、Probit和互补双对数回归模型;多值有序结果变量定性资料单、多水平累积Logistic、Probit和互补双对数回归模型;多值名义结果变量定性资料单、多水平扩展Logistic回归模
本书在内容以及形式上有如下三个特点:一是引领读者直达本学科的核心内容;二是注重应用,指导读者灵活运用所掌握的知识;三是突出了直觉思维在数学学习中的作用。作者不掩饰难点以使得该学科貌似简单,而是通过揭示概念之间的内在联系和直观背景努力帮助那些对这门学科真正感兴趣的读者。 本书各章均提供了大量的例题和习题,其中一部分有相当的难度,但绝大部分是对内容的补充。另外,本书附有一本专门的习题册,并且给出了习题的提示与解答。 本书适合于多种学科界的读者,如数学工作者、科学工作者、工程技术人员等。 本书为全英文版。
汪义瑞、石卫国编著的《数学分析简明教程(上 下)》分上、下两册,上册包含:实数集与函数、数 列极限、函数极限、函数连续性、导数与微分、微分 中值定理及其应用、不定积分、定积分、非正常积分 等九章;下册包含:数项级数、幂级数、傅里叶级数 、多元函数的极限和连续、多元函数的微分学、隐函 数定理及其应用、曲线积分、重积分、曲面积分等九 章.书中标有+的内容为选学内容。本教材的编写汇 集了各家教学成果和经验,把握了*内容,体现了 基本的数学理论知识,提供了灵活多样的数学思想 和思维方式、解题策略等。
数学分析立体化教材是作者在华南师范大学讲授数学分析及相关课程20多年的经验基础上写成的,有一些独到见解与体会。全套书在可读性、系统性和逻辑性上各具特色,并将分层教学的理念贯穿其中。首先在可读性方面,对于重要概念,只给一种定义形式,其他的等价定义放在思考题或习题中,对定理尽量用朴素的方法证明,对《数学分析学习辅导Ⅲ——习题选解》的例题表达尽量详细,让学生容易自学。其次在系统性方面,将关系较密切的内容放在一起,例如,将发散数列和子列的概念放在同一节等。另外,给出了有理函数分解为部分分式理论的详细证明。*后在逻辑性方面,尽量在给出定理的同时,也完成对定理的证明。 《数学分析学习辅导Ⅲ——习题选解》主要对《数学分析(一)》《数学分析(二)》《数学分析(三)》中的部分习题提供详细解答,目的
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际问题,提出了在建立数学横型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范。而且配备了大量的习题。 本书适合作为高等院校相关课程的教材和参考书,也可供参加国内数学建横竞赛的人员参考。
自从20世纪60年代以来。高维复分析领域有了迅速发展。这个领域中的新老结果在分析、微分几何和代数几何方面得到了大量应用,特别是在当代数学物理中的应用。掌握高维复分析的基础对许多现代数学领域中的专家来说已经成为了必需。本书根据作者沙巴特在莫斯科大学讲授的讲义编写而成,是一本学习高维复分析很好的入门教材。《复分析导论(第2卷多复变函数第4版俄罗斯数学教材选译)》是《复分析导论》(*卷)的后续篇,某些在*卷中提及的思想均可在本卷相应部分中找到。第二卷内容包括多复变量的全纯函数理论、全纯映射以及复欧氏空间中的子流形等。《复分析导论(第2卷多复变函数第4版俄罗斯数学教材选译)》可供高等学校数学、物理、力学及相关专业的本科生、研究生、教师,以及相关领域的研究人员参考使用。