微积分是人类智慧伟大的成就之一.300年前,受天文学方面问题的启发,牛顿(Newton)和莱布尼茨(Leibniz)阐发了微积分的诸多概念.自那时以来,每一世纪都证明了微积分在阐明数学、物理科学、工程学以及社会和生物科学方面问题的强大威力.由于微积分具有将复杂问题归纳为简单规则和步骤的非凡能力,迄今已获得相当大的成功.正因为如此,微积分的教学也存在着危险:很可能将这一学科仅仅教授成一些规则和步骤,从而既忽略了数学本身,也忽略了它的实际价值.由于美国国家科学基金会的慷慨资助,我们以哈佛大学为首的合作组,
从自然定律的基本方程出发,采用一些近似的模型、近似的方法导出第二性的针对具体问题的方程,应是物理学各课程和数学物理课程的基本训练之一。数学是一种严密的逻辑推理,用一些数学模型来模拟物理自然现象使得一些物理现象变得可以理解。模型当然要不断修正使之逼近实际情况。模型理论是物理实在的近似描写,是我们认识真理的重要工具之一。 人们已对数学物理方程做了广泛深入的研究,并出版了不少关于这方面的著作。这本入门书主要想根据各种定解问题及其有关解法来展开讨论。本书除了介绍数学物理方程的一般知识外,主要介绍方程的三种常用解法:分离变量法、积分变换法和格林函数法,还简明介绍了特征线法、平均值法、降维法和黎曼方法等一些其他求解方法。最后一章介绍一些实例,目的在于加强数学和物理的联系,为增强读者的应用
本书主要介绍许多工程和科学研究领域中有关分数阶偏微分方程的数值方法及其理论分析的成果,这些内容大部分是作者及其合作者得到的研究成果。这些分数阶偏微分方程包括空间,时间,时间-空间分数阶扩散方程,分数阶对流-扩散方程,分数阶反应-扩散方程,反常次扩散方程,修正的反常次扩散方程,反常超扩散方程,分数阶Cable方程,也包括多项时间-空间分数阶偏微分方程和变分数阶偏微分方程。分数阶偏微分方程的数值方法及其理论分析包括有限差分方法,有限元方法,谱方法,有限体积方法,无网格方法。我们讨论了数值方法的稳定性和收敛性,给出了数值结果,同时我们也介绍分数阶偏微分方程的一些应用实例。