本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书系统全面地介绍了微分学的相关理论,共包含11章内容,分别为基本公式、数、量、函数、极限、连续性、微分法、代数式的微分法则、导数的各种应用、逐次微分法及其应用、超越函数的微分法。 本书适合大学数学系师生及数学爱好者参考阅读。
本书主要介绍了复数、复变量、复变函数、微分方程、重积分、线积分、傅里叶级数、C.A.恰普雷金院士的微分方程近似积分法等知识,其中着重介绍了重积分及其在几何学中的应用,同时配有相应的例题及解答。 本书适合高等院校数学专业师生和数学爱好者参考阅读。
本书共9章,包括:一般概念、已解出导数的一阶方程的若干可积类型,已解出导数的一阶方程的解案存在问题,未解出导数的一阶方程,高阶微分方程,线性微分方程的一般理论,特殊形状的线性微分方程,常微分方程组,偏微分方程、一阶线性偏微方程,一阶非线性偏微方程,最后附有答案。 本书适合数学专业师生及数学爱好者参考阅读。
本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述 维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。 本书适合高等院校师生及数学爱好者研读。
本书共分三编:第一编为引言,主要介绍了Stieltjes与Stieltjes积分、Radon-Stieltjes积 分等;第二编为性质篇,主要介绍了Stieltjes积分和抽象积分的极限性质、Riemann-Stieltjes积分和积分中值定理等相关知识;第三编为应用篇,重点介绍了Stieltjes积分及其应用、用Lebesgue-Stieltjes积分定义的双曲型方程广义解等知识. 本书适合大学师生及数学爱好者阅读参考.
《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿微积分简析》 本书是专为微积分初学者或非数学专业的学生所写的。对于既不需要数学微积分课程的严格要求,也不需要工程和物理学微积分课程的细节的学生来说,本书有恰到好处的内容和深度。本书分为5章,第1章是导语,介绍微积分是什么;第2章讲解极限,如何无限地接近却不等于一个数;第3章介绍导数,解决瞬时速度问题;第4章介绍导数的应用;第5章介绍积分。 本书适合于高中生、大学生和想学习
本书的内容为叙述近代复变函数论的方法对于力学的一个特殊问题(重刚体绕不动点运动问题)的应用,也就是微分方程的解析理论的方法对于动力学方程的积分法的应用。 本书大体分为四部分:第一部分介绍了理论力学的基本知识;第二部分介绍了重刚体绕不动点运动的各种情形以及在这些情形下的积分法;第三部分介绍了复变函数的基本知识;最后一部分给出了运动方程积分法的某些补充。 本书可供数学、力学、物理学等相关专业的人员参考使用。
《流形上的层》编著者柏原正树。 层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
这是一部译自俄文的享誉世界的大型英文数学工具书。经过半个世纪的多次补充和修订,它已成为数学家、物理学家和工程技术人员常用的主流工具书。本书收集了1万2千余条从初等函数到特殊函数的积分公式、级数和公式及乘积的数学用表。本书是第8版,本版在第7版的基础上做了修订,其中对上一版的后三章内容做了调整。 目次:导论:初等函数;初等函数的不定积分;初等函数的定积分;特殊函数的不定积分;特殊函数的定积分;特殊函数;矢量场理论;积分不等式;傅里叶变换,拉普拉斯变换和梅林变换。
本书是在1996年第六版《常微分方程》(德文)一书的基础上编写而成的。本书主要介绍了常微分方程的基础理论,内容包括:可积一阶微分方程,微分方程解的存在性和*性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。此外,本书还增加了在一般相关教材中很少涉及但具有一定难度的内容,并对一些复杂基本定理给出了新的证明。阅读本书须具备一定的计算代数、线性代数及泛函分析的基础知识。 目次:一阶微分方程,一些可积的例子;一阶微分方程理论;一阶系统,离阶微分方程;线性微分方程;复线性系统;边值问题与特征值问题;稳定性与渐进稳定性。
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。