?书 ? ? ? 名 ??微积分同步辅导与习题全解(高教社.同济大学.第三版.上册) ?作 ? ? ? 者 ?李红英 ?出 ?版 社 ?华东理工大学出版社 ?出版时间 ?2013年10月 ?I ?S ?B N ?978-7-5628-3646-9 ?页 ? ? ? 数 ?190?页 ?字 ? ? ?数 ?350千字 ?开 ? ? ? 本 ?16 开 ?装 ? ? ?帧 ??
本书是教材《微积分(第四版)》的配套用书,是《 微积分(第四版) 学习参考》的缩编本,旨在帮助学生自学以及方便教材教学,本书的章节安排与教材相同,内容主要包括教材习题的解答与注释。
本书是2015年上海普通高校**本科教材《高等数学上、下》(上海大学数学系编,高等教育 出版社出版)配套辅导书,本书由三部分组成,**部分含有13套强化训练题,涉及课程内容有: 函数的极限与连续;导数与微分;微分中值定理及导数的应用;不定积分、定积分,第二部分12套 强化训练题,涉及课程内容有:定积分的应用;向量代数与空间解析几何;多元函数微分学及其应 用;重积分;曲线积分与曲面积分;第三部分9套强化训练题,涉及课程内容有:微分方程;无穷级 数.分别对应上海大学三学期教学内容.训练题共有811题,由历年上海大学微积分考试试卷选编 而成,题目类型有填空题、选择题、计算题、证明与应用题,所有题目都给出了详细的解答过程,部 分题目给出解题分析, 本书可作为高等院校高等数学课程的教学参考书,
苹果有 3 个,蜜橘有 3 个,两边 同样 是 3 个。但 苹果 与 蜜橘 并不相同,如何能视为 同样 呢? 数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文字、难懂的公式,犹如一堆没有灵魂的音符,这实在让人遗憾。本书作者巧妙地将图象和数学概念结合在一起,演奏了一曲华美的乐章。与考试和编程中使用的微积分知识相比,本书的内容相对简单,但不失趣味地揭示了微积分 细细切分、密密汇集 的思想,并十分形象地讲述了*值、极限、斜率、函数等知识。 奇幻旅程开始啦!
本书是作者根据多年来为北京大学力学系研究生和高年级本科生讲授同名课程的讲稿编写而成的,书中系统介绍了微分几何的基础知识。全书共分为六章: 章介绍了向量和张量的基本性质;第二章给出了欧氏空间中曲线与曲面的几何;第三章引入了流形的概念及若干性质,如向量的Lie导数的性质;第四章介绍了流形上的微分形式和外微分运算,并给出了几个重要定理的证明;第五章介绍了Lie群与Lie代数的性质,特别是在不变量理论中的应用;第六章介绍了动力系统与Symplectic几何的理论及其在力学中的应用。每章末配有适量的习题,便于读者选用。 本书叙述简明易懂、逻辑严谨、条理清晰,注重分析及应用,着重在所介绍内容和力学理论的联系上举一些例子,如应变和Lie导数的关系、协调方程、Hamilton力学的几何理论等等。
本书是微积分(上册)(经管类?第五版)的教学参考书,根据高等院校经管类本科专业微积分数学课程的教学大纲编写而成,并在第四版的基础上进行了修订和完善。包含函数与极限、一元微分学、一元积分学等内容的学习辅导与习题解答。
《微积分习题与典型题解析》根据普通高校微积分课程教学大纲,并参照***考试中心颁发的《全国硕士研究生入学统一考试数学考试大纲》编写,内容分为函数与极限、连续性与导数概念、微分中值定理与导数的应用、不定积分、定积 、分、定积分的应用与反常积分、空间解析几何、多元函数微分学、二重积分与三重积分、曲线积分与曲面积分、数项级数与幂级数、微分方程等12个专题,每个专题含 重要概念与基本方法 习题选解 典型题选解 三个部分,其中 习题 选自张玉莲、陈仲等编著的《微积分》(Ⅰ,Ⅱ)一书的习题, 典型题 选自全国历年硕士研究生入学试题、南京大学历年硕士研究生入学(单考)试题以及编者收集和原创的 好题 . 《微积分习题与典型题解析》可供各类高等学校的大学生作为学习微积分或高等数学课程和考研复习的参考书,
目前《微积分/数学分析》课程的教材已经很多,但基本上都是为数学专业编写的,因而理论的完整性、证明的严格性强调的比较充分;为理工科非数学类专业编写的《微积分》教材则往往更多侧重在计算方面。实际上,对于不少非数学专业的优秀理工科学生而言,微积分计算技能的培养和严谨的数学思维的训练常常是都需要的;另一方面,即便对于数学专业的同学,在展示完整优美的数学理论体系的同时,往往也需要一些如何思考、把握相关内容的来源、基本(粗糙一些)的思路的引导。随着新一代学生在中学教育阶段严谨的逻辑训练的减弱(例如,平面几何的训练比上世纪学生有明显的减退),以及对于学习完整演绎方式构建微积分体系的动力减弱,需要以一种更为直观、生动的方式传授给学生微积分的内在动机、目标和各部分的关系。这样才能吸引他们投
《微积分教程(上 第2版)/高等学校“十三五”重点规划工科数学系列丛书》依据新的“工科类本科数学基础课程教学基本要求”,吸收外同类教材中的优点,并结合多年教学中积累的经验,注意教学过程中发现的问题,经由应用数学系多位教师的共同研究和推敲编写而成。 本《微积分教程》分上、下两册。上册主要内容有:函数与极限,导数与微分,中值定理及导数的应用,不定积分,定积分及定积分的应用;下册主要内容有:多元函数微分学,重积分,曲线积分与曲面积分,无穷级数及常微分方程。《微积分教程(上 第2版)/高等学校“十三五”重点规划工科数学系列丛书》思路清晰、语言精练、讲解透彻,叙述详尽、例题丰富,内容适应面广,富有弹性,可作为高等院校工科本科生“微积分”课程的教材或教学参考书。
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
本书涵盖高等数学课程中的常微分方程和解析几何两个模块内容.第壹章给出微分方程的一些基本概念,随后给出几种常用微分方程的解法及常微分方程的应用.第二章从建立空间直角坐标系出发,引进向量工具,讨论平面与直线 空间曲面与空间曲线等内容. 本书内容精练,重点突出,论述严谨,可读性强,可作为高等院校大类招生 大类培养模式下选取数学分析教材作为高等数学课程教材的配套用书,也可作为高等数学学习的自学用书和参考教材.
本书是与朱来义主编的面向21世纪课程教材《微积分(第三版)》配套的学习辅导书,根据全国硕士研究生入学统一考试数学考试大纲(经济类)的要求编写而成。为了与教材保持同步,本书按原书的编排顺序逐章编写。每章