基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中*部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯 李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的伟大人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;*
本书以点集拓扑核心内容为基础,从经典拓扑和内蕴拓扑的应用出发,结合理论计算机科学和信息科学等进一步阐述无点化拓扑、Domain理论、数字拓扑与数字图像信息处理、形式概念分析与广义近似空间理论(粗糙集理论)、宇宙拓扑模型等。全书共12章。第1?3章是点集拓扑的经典内容;第4章为范畴论基本概念和无点化拓扑;第5?8章是序结构理论及拓扑学在Domain理论中的应用;第9章是数字拓扑及在数字图像处理方面的应用;第10章是关于形式背景的序结构和拓扑理论;第11章是广义近似空间和抽象知识库的拓扑理论;第12章是对宇宙空间拓扑模型的探讨等。
本书的内容是关于楼(building)理论及其在几何和拓扑中的应用。楼作为一种组合和几何结构由Jacques Tits引入,作为理解任意域上保距还原线性代数群结构的一种方法,Tits因此项工作获得2008年Abel奖。楼理论是研究代数群及其表示的必要工具,在几个相当不同的领域中具有重要应用。本书的第一部分是作者专为国内学生学习楼理论准备的导读资料,其中特别注重利用例子说明问题,可读性很强;第二部分则综述了楼理论在几何与拓扑方面的应用,不仅总结了近些年楼理论研究的成就,还提出了未来的研究方向。本书是一本观点较高、极具学术价值的数学学习资料,可供我国高等院校代数及相关专业作为教学参考书使用。 Symmetry is an essential concept in mathematics, science and daily life, and an effective mathematical tool to describe symmetry is the notion of groups. For example, the symmetries of the regula
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
《卡拉比–丘流形和相关几何》是由2001年夏天norway,nordfjordeid讲述辛几何的讲义扩展而成。突出讲述calabi-yau是本书的*特点。部分讲述完整群和已校准子流形,强调特殊拉格朗日算符子流形和syz猜想;第二部分运用代数几何讲述calabi-yau流形和镜子对称。后一部分讲述紧hyperkahler流形,它具有的几何结果和calabi-yau流形有很大的关系。各部分之间过渡自然,衔接紧密紧密,是一部很好的教程。目次:黎曼完整群和已校准的几何;calabi-yau流形和镜子对称;紧hyperk?hler流形。 读者对象:数学专业的高年级本科生,研究生和科研人员。
One of the main themes of this book is the conflict betweenthe "flexibility' and the "rigidity properties of the hyperbolicmanifolds: the first radical difference arises between the case ofdimension 2 and the case of higher dimensions (as proved inchapters B and C), an elementary feature of thus phenomenon beingthe difference between the Riemann mapping theorem and Liouville'stheorem, as pointed out in chapter A. Thus chapter is ratherclementary and most of its material may' be the object of anundergraduate course. Together with the rigidity theorem, a basic tool for the study ofhyperbolic manifolds is Margulis' lemma, a detailed proof of whichwe give in chapter D; as a consequence of this result in the samechapter we also give a rather accurate de*ion, in alldimensions, of the thin-thick decomposition of a hyperbolicmanifold (especially in case of finite volume).
内容介绍 本书部教程,可以作为高年级本科生或者研究的一年级课程,也可以用于自学。这第二版,增加了50来页新材料,许多篇幅都做了更新;简化了证明,增加了新例子和练习。必需的点集拓扑在附录中用25面的篇幅给出,另外的一些附录重述了实分析和线性代数。书中提供了许多练习和问题的提示和解答。流形、光滑曲线和曲面的高维类似物,这些都是现代数学的基本研究对象。将代数、拓扑和分析几个领域结合起来,流形已经很好地应用在经典力学、广义相对论和量子场论等多个领域。本书直达主题,流形的讲述旨在帮助读者更快地了解这个科目的本质。学完该书读者应该能够计算,至少是简单空间的Rham上同调,这是一个流形的本拓扑不变性之一。同时读者也获得了进一步学习几何和拓扑所必需的知识和技巧。目次:欧几里得空间;流形;切向空间;
本书以Hilbert空间中线性算子数值域以及相关问题为主线,对线性算子数值域基本性质以及应用进行阐述.本书的内容框架如下:第1章主要介绍Hilbert空间中线性算子数值域.第2章主要介绍Hilbert空间中有界线性算子数值半径.第3章主要介绍Hilbert空间中一些特殊算子的数值域.第4章主要介绍由Hilbert空间中线性算子数值域推广得到的一些特殊数值域,将Hilbert空间中线性算子数值域的研究提升到一个新的高度.第5章介绍Hilbert空间中线性算子的扩张理论,为Hilbert空间中线性算子数值域的应用提供平台.
代数几何是数学中*古老和发展比较快的学科之一,它与投影几何、复分析、拓扑学、数论以及数学领域的其它分支有着紧密的联系。然而近些年代数几何不论是风格还是语言都发生了巨大的变化,本书展示了相关理论的主要研究结果和计算工具的发展。本书有如下特点:(1)本书以研究具体几何问题和特殊类代数簇为中心来展开。(2)注重实例的复杂性与通常模式的对称性这两者之间的均衡,在选择的论题和叙述顺序中,书中尽量体现这种关系。(3)尤其对于涉及到的 复杂 结果,都有充分完整的证明。目次:多复变初步;复代数簇;Liemann曲面和代数曲线;深入技巧;曲面;留数;二次线丛。
本书根据高等教育教学内容和课程体系改革的要求和科技发展的需要,结合编者多年教学、科研实践经验编写而成。本书以几何量精度设计与检测为主线,遵循“加强基础、精选内容、调整体系、重在应用”的编写原则,采用新的国家标准,阐述了本学科的基本理论和基本知识。全书分为四个部分:*部分为几何量精度设计基础,包括绪论、尺寸精度、几何精度、表面粗糙度和尺寸链;第二部分为典型件几何量精度设计,包括滚动轴承、圆柱螺纹、键和花键、渐开线圆柱齿轮;第三部分为几何量精度检测,包括几何量测量基础、孔及轴尺寸的检测和检测综述;第四部分为几何量精度综合设计与综合实验。本书附录中有各章思考题和习题、相关公差表格及常用术语的汉英对照。本书配有电子课件。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
本书介绍例外群的知识,分为三部分:理论、应用及附录;共14章,包括经典群、复合代数、例外若尔当代数、例外群的算术子群、例外李群上同调、齐次空间、例外李群在理论物理和代数几何中的应用等。Bruce Hunt 于1986年在波恩大学取得博士学位,导师是Frierich Hirzebruch(同时代数学家中的领军人物)。Bruce Hunt 发表了“模簇、球商、Calabi-Yau 簇”等方向的一系列论文,2021年出版了获得五星好评的巨著《局部混合对称空间》,也是《微分几何:曲线、曲面、流形(第三版)》一书的英文译者。
本书是对粗几何领域的一次全面而深入的探索。它不仅仅梳理了粗几何的基本理论,更对粗几何中的核心问题进行了深刻的研究。对于从事几何、群论、指标理论、非交换几何以及大数据分析等领域研究的学者来说,本书无疑是一本极具价值的参考书籍。
三角形是几何图形中最基本的图形,是研究其他图形的先行组织者,是衔接图形与代数知识的支架,被称为古希腊几何学研究的主角。三角形以它独特的、神奇的魅力,搭建了几何学习的重要桥梁。本书将帮助学生直观理解和掌握三角形,经历得到三角形的基本性质,形成几何直观和推理能力,发展直观想象、逻辑推理、数学抽象等核心素养;并基于三角形的研究路径,研究三角形的定义、表示、画法、元素、性质、判定、特殊三角形、三角形关系、三角形性质应用,深度迁移得到几何图形探究的方法。本书将在双新的视觉下,循着三角形的探究学习之路,由三角形的学习开启几何探索的大门!