《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书是数理统计入门级的教材,作为基础课的教材,本次修订我们修改了版中的不当之处,删去了U统计量、线性估计、构造置信限等内容,选择点估计、区间估计、参数检验和分布检验4个基本的统计问题作为本书主要内容,中间插入贝叶斯统计的一些观念和方法。全书5章内容,把统计量和抽样分布等基本概念归入第1章,为年轻读者进入统计学的研究和应用打下扎实的基础
本书共分六章。章介绍了*事件的概念与运算、概率的定义、古典概型、条件概率、全概率公式与贝叶斯公式、事件的独立性与伯努利概型等内容;第二章介绍了*变量及其分布的概念、*变量的数字特征以及常见的离散型和连续型分布;第三章将*变量的概念扩展到二维*变量,介绍了二维*变量的分布、独立性及其数字特征;第四章简要介绍了切比雪夫不等式、大数定律和中心极限定理;第五章介绍了总体、样本和统计量等统计学的基本概念以及X’分布、t分布和F分布等内容;第六章介绍了参数的点估计和区间估计以及正态总体参数的假设检验的方法与步骤。
"本书是根据作者多年的全英文教学经验编写而成的,是与作者编写的《概率论与数理统计(英文)》相配套的学习辅导用书。 本书主要围绕概率与随机事件、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、参数估计、假设检验、线性回归分析设计问题,并通过系统、详尽的解答分析,以及对题目背后内涵和关系的深入挖掘来帮助读者进一步提高概率论与数理统计的基本理论水平和实践应用能力。在编写过程中,作者吸取了国内外优秀教材和辅导用书的优点,注重理论与实践相结合。本书系统性强,图例丰富,突出统计思想,着力培养学生分析问题和解决实际问题的能力。 本书可用作高等院校理工科各专业本科生 概率论与数理统计 课程全英文或双语教材的辅助用书,也可供工程技术人员、科技工作者参考。"
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书是一本关于可靠性的入门书,讲述可靠性的基本概念,并对常用的寿命分布下的各种可靠性特征的点估计、区间估计、假设检验和加速寿命试验作出较为详尽的叙述,对*近国际上兴起的退化数据处理和贝叶斯分布两个专题作了较多的介绍。读完本书可转入可靠性专业文献阅读。 本书适用于相关专业的研究生和教师,对于可靠性工作者也有着重要的参考价值,本书前五章部分内容可作为本科生选修课教材。
本书是一部经典的*过程著作,叙述深入浅出、涉及面广。主要内容有*变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了*过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关*模拟的内容,给*系统运行的模拟计算提供了有力的工具。zui新版还增加了不带左跳的*徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业*过程基础课教材。
本书旨在满足各水平层次学生学习概率统计及自学深造的目标需求,并结合专业特点,适当介绍了概率论与数理统计相关的经济学知识和应用实例。本书共8章,内容包括随机事件与概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、随机样本及其抽样分布、参数估计和假设检验。每节后附有同步基础训练,以便于对本节内容的掌握程度进行初步检验;每章末按从易到难的原则配备了(A)、(B)两类习题,供学生巩固提高之用。书末提供习题参考答案及附表,供读者参考、查阅。
20世纪以来,概率论逐渐渗入到自然科学、社会科学以及人们的日常生活中。无论是在研究领域,还是在教育领域,它愈来愈成为重要的学科之一。在概率论发展历史上,18、19世纪之交法国科学家拉普拉斯具有特殊的地位。 拉普拉斯在他的纯粹与应用数学的众多严格的学术著作之外,还出版了为普通读者写的两篇通俗文章,《关于概率的哲学随笔(双语版)》就是其中的一篇,它构成了《拉普拉斯全集》第7卷中的巨著《概率的分析理论》的引言。 《关于概率的哲学随笔(双语版)》的意图就是让读者不借助较深的数学知识就能了解概率的原理,作者本质上将数学对象以非数学的面貌呈现,用大众化的语言详细论述当时概率论的原理和一般结论。 拉普拉斯概率理论在19世纪的概率论发展史上占据了中心和统治地位,对19世纪的概率论的发展产生了
《*过程》是高等院校*过程课程的教材。全书共分七章,内容包括:概率统计、泊松过程、更新过程、离散时间马尔可夫链、连续时间马尔可夫链、布朗运动和应用举例。每小节配有练习题,每章配有总习题,书末附有习题答案或提示,供读者参考。本书对实际应用中常见的*过程作了较为系统的介绍,有许多新的简明讲法,方便读者更好地理解*过程的概念和主要定理。 《*过程》可作为综合大学数学、统计学专业本科高年级*过程课程的教材或教学参考书,也可作为综合大学、高等师范院校、理工科大学和财经院校研究生*过程课程的教材或教学参考书。学习本书的先修课程是高等数学、概率论与数理统计。
本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
本书是为应用数学专业、数学专业、概率统计专业、信息与计算科学专业本科大学生和非数学专业的硕士生学习数理统计而编写的教材。主要内容有:抽样分布、参数估计、假设检验、方差分析与正交试验设计、线性回归模型。本书每章末附有习题,书后附有答案。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
本书介绍概率论、数理统计、*过程三部分内容。第1章至第6章为概率论,包括:*事件的概率;*变量及其分布;二维*变量;*变量的函数的分布;*变量的数字特征;大数定律和中心极限定理。第7章至第11章为数理统计,包括:统计量及其分布;参数估计;假设检验;方差分析;回归分析。第12章至第14章为*过程,包括:*过程的基本概念;平稳过程;马尔可夫链。书中配置了相当数量的例题和习题,便于读者自学,并且配置了适量应用性的例子。 全书内容丰富,深入浅出,在满足理工科大学基本教学要求的基础上,选编了部分具有广阔应用领域的内容,使得本书既可作为理工科大学的本科教材,又可作为研究生参考书,也可作为有关专业的教师和工程技术人员的参考书。
由夏宁茂等编著的《概率论与数理统计》是培养学生利用*思维模式看待和处理*现象的一门重要数学基础课程。 通过模拟、函数计算及程序调用,把Excel工具广泛使用于概念的引进和数值计算,帮助学生形象理解新概念,直达核心处理思想;现代概念的描述性融入,现代概率论中的基本概念,例如:“可测性”、“概率空间变换”、“条件数学期望”、“期望积分平均”等科普描述性的引进,可使学生缩短与近代概率论之间的距离;教材重视基本概念与方法,又强调*处理的思想,通过借用MBA的案例分析方法,引导学生灵活运用所学知识,掌握*处理的基本过程;概率统计前后呼应、相互融合,兼顾传统理论与时代精神。
本书包括离散时间Markov链、Poisson过程、更新过程、连续时间Markov链、鞅和金融数学六章内容,涵盖了*过程的核心知识点,涉及大量较新应用。书中内容完全以应用为导向,不涉及高深的理论证明或数学推导,极富思想性作者力求通过展示*过程的实际应用来让学生学习这门学科,因此书中有大量的例子,还有200多道习题来加深读者对内容的理解。 本书可作为各专业本科生或研究生的*过程入门教材,也可作为相关老师和实际工作者的参考书。