《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
《数理统计学导论(原书第7版)》是数理统计方面的经典教材,从数理统计学的初级基本概念及原理开始。详细讲解概率与分布、多元分布、特殊分布、统计推断基础、极大似然法等内容,并且涵盖一些高级主题。如一致性与极限分布、充分性、*假设检验、正态模型的推断、非参数与稳健统计、贝叶斯统计等。此外,为了帮助读者更好地理解数理统计和巩固所学知识,书中还提供了一些重要的背景材料、大量实例和习题。 本书可以作为高等院校数理统计相关课程的教材,也可供相关专业人员参考使用。
《统计学精品译丛:*过程(原书第2版)》中文简体字版由约翰威利父子公司授权机械工业出版社独家出版。未经出版者书面许可,不得用任何方式复制或抄袭本书内容。 《统计学精品译丛:*过程(原书第2版)》从概率的角度而不是分析的角度来看待*过程,书中介绍了*过程的基本理论,包括Poisson过程、Markov链、鞅、Brown运动、*序关系、Poisson逼近等,并阐明这些理论在各领域的应用。书中有丰富的例子和习题,其中一些需要创造性地运用*过程知识、系统地解决的实际问题,给读者提供了应用概率研究的实例。 《统计学精品译丛:*过程(原书第2版)》是*过程的入门教材,没有用到测度论,仅以微积分及初等概率论知识为基础,适合作为统计学专业本科生以及其他理工和经管类专业研究生相关课程的教材,更值得相关研究人员和授课教师参考。
本书基于麻省理工学院开设的概率论入门课程编写,内容全面,例题和习题丰富,结构层次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、 小二乘估计等 内容。
本书以数据的常用统计分析方法为基础,在简明扼要地阐述统计学基本概念、基本思想与基本方法的基础上,讲述与之相对应的R 函数的实现,并通过具体的例子说明统计问题求解的过程。 本书注重思想性、实用性和可操作性;在内容的安排上不仅包含了基础统计分析中的探索性数据分析、参数的估计与假设检验,还包含非参数统计分析的常用方法、多元统计分析方法; 此外还安排了在R 新生态下数据治理与可视化的拓展性内容。每一部分都通过具体例子重点讲述解决问题的思想、方法和在R 中的实现过程。阅读本书,读者不仅可以快速学会R 的基本原理与核心内容,还可以根据提供的例子与相应的R 程序学会解决问题的统计计算方法与基本的编程技术,为解决更复杂的统计问题奠定扎实的基础。 本书可作为各专业本科生、研究生数理统计或应用统计课程的基础教
自Shewhart博士在20世纪20年代提出第一个控制图后,现在关于控制图的研究结果已十分丰富,且取得了良好的社会和经济效益。特别是,近年来出现的多个新的研究方向也取得了一些很好的研究成果,但系统介绍这些成果的著作并不多,而本书将作这方面的努力与尝试,其中有部分成果来自作者所在的课题组,特别是关于监测profile的研究内容。本书主要讲述近年来关于统计过程控制图的一些基本理论与方法,如阶段I控制图、Shewhart控制图、CUSUM控制图、EWMA控制图、关于监控profile的控制图等;另外,本书也包含有关相关数据、多元数据及非参数控制图的一些内容;再者,本书也介绍了有关动态控制图的一些研究成果;最后,作者把有关控制图的ARL及ATS的计算方法进行了较详细的总结。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》中的一本。 本书是俄罗斯著名数学家A.H.施利亚耶夫的力作。施利亚耶夫是现代概率论奠基人、前苏联科学院院士、著名数学家A.H.柯尔莫戈洛夫的学生,在概率统计界和金融数学界影响极大。 本习题集是作者在长期积累的基础上精心编写而成的,共收集了1500 余道习题(包括子题),它们与作者的《概率》(2004版)二卷本联系紧密,并按照同样的顺序编排。除了用来检查对二卷本中的概念、结论掌握情况的习题外,习题集中还包括需要较大创造性来解答的中等和高等难度的习题,以及作为二卷本内容补充的习题。大部分习题都附有提示。在附录中还解释了本书所用到的基本符号。并对与本书内容有关的概率论、组合论以及位势理论的基本概念作了简要的介绍。 本书适合概率统计、数学
本书介绍非参数统计的基本概念和方法, 其内容包括预备知识、U 统计量、基于二项分布的检验、列联分析、秩检验、检验的功效与渐近相对效率、概率密度估计、非参数回归. 每一章内容都着重阐述非参数统计推断的一般处理技术和原则, 并给出一些典型例子. 各章后面的习题侧重于应用. 本书的特点是侧重于介绍非参数统计在各应用领域中的常用方法,尽可能简化公式推导并淡化理论证明. 此外, 本书有选择地安排一些模拟计算和实际数据分析, 其主要程序放在附录A 中.