如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
《高级计量经济学》是雨宫健教授在长年担任Joural of Econmometrics主编之后编写的研究生层次的计量经济学教材,融合了计量经济理论研究的方法和技巧,也是一本值得计量经济学的专业人员认真阅读的计量经济学著作。在计量经济学理论研究的学术论文中,《高级计量经济学》是一本被广泛引用的参考文献,迄今为止的累计引用数高达3 200次以上。《高级计量经济学》着重讨论微观计量经济学涉及的各种理论问题,特别是在微观计量分析的定性模型的详细讨论中融入了作者的研究心得经验。《高级计量经济学》从经典小二乘法出发,结合拓展的各种回归分析方法,说明计量经济理论涉及的大样本理论,利用大样本理论讨论微观计量分析出现的极值统计量的性质及各种微观计量模型的统计推断问题。考虑到计量经济理论体系的完整性,《高级计量经济学》也适当介
本书选编了阿蒂亚关于拓扑学、大范围几何、纯粹数学的历史及发展方向等方面的文章。此外还包括阿蒂亚访问记、阿蒂亚对自己数学工作的总结以及他关于其他学科对数学的影响等的论述。通过本书,我们可以全面地了解阿蒂亚的数学和哲学思想。
在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现。传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。 在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随着时间的推移寻求*化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
本书结集了冯 诺依曼各时期的代表作,包括集合论的公理体系、量子力学的公理化、通用电子计算机EDVAC算法理论以及现代数理经济学。对于现代科技带给人类的影响,作者也给出了独特的见解,体现了一位天才数学家的哲学思想。
《华章数学译丛:数理金融初步(原书 3版)》清晰简洁地阐述了数理金融学的基本问题,主要 括 利、Black-Scholes期权定价 式以及效用函数、优资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法 基本思想 统地展示给读者. 《华章数学译丛:数理金融初步(原书 3版)》内容 择得当、结构 排合理,既适合作为高等院校学*( 括财经类 业及应用数学 业)的 材,同时也适合从 金融 作的人员阅读。
本书第1~5章是变分方法所需要的泛函分析基础内容;第6章主要介绍了相互等价的Ekeland变分原理与Cansti不动点定理,侧重于变分原理与不动点理论之间的关系;第7~8章是Sobolev空间和Banach空间中微分学的基本知识,同时讨论了Poisson方程与泛函极值问题的互相转化;第9~10章的重点是临界点理论和泛函极值问题,分别用Ekeland变分原理和下降流线方法给出了著名的山路定理,应用山路定理和最小作用原理研究二阶半线性椭圆方程边值问题,同时包括与单调梯度映射相关的变分方法;最后第11章致力于变分方法在具体工程问题中的应用。
由汪杰良编*的《激发学生学好数学的潜能--复 旦大学附属中学学生撰写数学小论文的实践》收集了 自2011年 复旦附中课程体系建设方案 实施以来, 该校学生在 数学欣赏 数学研究 选修课汪杰良 老师指导下,进行课题研究的成果。这些成果以数学 论文的形式发表在各类专业数学刊物上。 书中每篇论文都附有指导老师的点评,以及学生 撰写数学论文的心得体会,这是复旦附中学生坚持多 年以及汪老师坚持20年努力的结果。读者可以从中体 会到汪老师是如何激发学生学好数学的潜能,指导学 生撰写数学小论文的心路历程的。因此,本书对提高 高中学生的自主探索科学研究能力,进而促进素质教 育具有较大的意义,这是一本值得广大中学数学教师 和中学生研究学好数学的**读物。 本书可供高中学生及数学专业教师学习参考,也 可供中学生中数学爱好者学
本书以数理统计、建模优化和决策分析为主线,系统介绍统计学、运筹学和决策领域的常用模型与方法。全书共4章:第1章介绍统计学的基本内容,包括数据处理、相关性分析、主成分分析、聚类分析和预测分析;第2、3章分别介绍初等运筹学和高等运筹学,内容包括线性规划、运输规划、整数规划、图论与网络规划、存储论和排队论、非线性规划和多目标规划;第4章系统归纳决策分析常用的理论和方法,专门增加了多属性决策方法、博弈论和冲突分析图模型理论。
当今世界,科技创新在综合国力竞争中的地位日益突出,已成为支撑和引领经济发展和人类文明进步的主要动力。R&D(研究与发展)活动是科技活动中*创新性的部分,对科学技术向现实生产力转化起到了至关重要的作用。因此,对于R&D活动的研究也备受国内外学术界的关注。《中国R&D理论、方法及应用研究》试图从我国实际情况出发,借鉴国际同行业先进水准,对我国R&D投入统计及相关理论和应用问题进行研究。 《中国R&D理论、方法及应用研究》主要内容:R&D统计发展概况、我国R&D统计理论方法、统计指标体系、R&D资源投入主导模式及国际比较、R&D投入产出效益、R&D与经济发展的关系等。研究成果对于国家科技部和财政部及相关部门制定我国R&D投入与使用政策具有重要的参考意义,对改进我国R&D活动和管理组织的模式,增进我国科技和经济
本书在借鉴现有的数学方法和分析工具的基础上,利用Lyapunov分析的方法、Khasminskii的平稳分布理论及周期性理论,研究了随机多种群互惠模型、两类随机捕食-食饵模型及具有流行病的随机竞争种群模型等。着重讨论几类种群模型解的存在*性、遍历性及周期解的存在性问题。本书的研究既丰富了随机微分方程及随机种群系统的理论,也为生态资源的保护和开发利用提供有效建议。
本书涉及各类数学问题的数值解法和必要的基础理论,内容包括Mathematica软件介绍、数值分析的基本概念、线性方程组的数值方法、函数的插值、数值逼近、数值微积分、非线性方程求根、矩阵的特征值与特征向量、常微分方程问题的数值计算等。为了使学生充分了解数值分析方法在科学研究与工程实践中的重要作用,本书还特别设置了应用实例的章节,旨在激发学生的学习兴趣。 本书适合作为高等院校应用数学、信息与计算科学、统计等专业数值分析的教材或教学参考书,也可供科研工作者、相关技术人员参考使用。
本书介绍了生物数学研究中的动力学模型方法,如动力系统分支理论、时滞微分方程数值解法、**控制理论等。重点介绍了近年来连续与离散动力系统的分支理论及在生物数学模型中的应用。
本书是为高等师范院校的数学建模课程编写的教材,体现了高等师范院校的培养目标和办学特点.内容包括用MATLAB求解数学问题、数学建模概述、差分方程模型、常微分方程模型、数值逼近模型、统计回归模型和**化模型.本书注重数学建模的基础知识和基本技能,并通过实例进行案例教学,既包括一些能够与中学数学相衔接的经典的建模问题,又包括一些由近年来大学生数学建模竞赛题简化改编的案例;既重视建模方法和技巧的训练,又重视使用MATLAB软件求解模型的能力培养.习题与教学内容紧密配合,并在书后附有部分习题的答案或提示.随书附送的光盘中包含课堂教学演示电子文档.
本书为化学工程与技术专业的工科研究生编写。在版的基础上,本书是根据化工发展的需要和几年的教学实践情况而修订,调整了部分内容和章节,增加了部分内容,以适应当前的需要。内容包括:绪论、常微分方程、复变函数概述、矢量分析与场论、积分变换、偏微分方程与特殊函数、偏微分方程的近似法。每章含有大量例题,均附有一定数量的练习题和答案,以及参考文献,供读者练习和参考。 本书的编写参考了美国一流大学工科研究生应用数学的教课书和国内教材,保留了前一版内容丰富,结构严谨,具有一定的理论深度,且概念清楚易懂,便于自学的特点。 本书也可作为工科院校本科“工程数学”课程有关部分的教学参考书。亦可供化工、环境和生物工程等有关专业的科研和工程技术人员参考。