《矩阵之美(算法篇)》对多种**矩阵算法进行了新颖、全面且深入的解读。具体而言,第1章从代数、几何、分析和概率等多个角度详细介绍了*小二乘法;第2章对主成分分析进行了深入解析,涵盖代数、几何、子空间逼近与概率视角;第3章探讨了一种新兴的非对称数据分析方法 主偏度分析,并深入剖析了其性质和理论内涵;第4章介绍了典型相关分析及其关键性质,并从几何角度对其本质进行了进一步的阐释;第5章聚焦于非负矩阵分解,探讨了其与混合像元分析、奇异值分解、聚类分析及KKT条件的关联;第6章重点介绍局部线性嵌入,并将其与其他典型非线性特征提取方法进行了系统比较;第7章深入介绍**的傅里叶变换,并从矩阵角度对其内涵进行了新的诠释;第8章介绍了一种新颖的一阶统计分析方法 连通中心演化,重点阐明其在数据中心识别方面的优势和潜
本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书以简明统一的方式介绍了用于求解线性约束凸优化问题的分裂收缩算法。我们以变分不等式(VI)和邻近点算法(PPA)为基本工具,构建了求解线性约束凸优化问题的分裂收缩算法统一框架。在该框架中,所有迭代算法的基本步骤包括预测和校正,分裂是指通过求解(往往有闭式解的)的凸优化子问题来实现迭代的预测;收缩指通过校正生成的新迭代点在某种矩阵范数意义下更加接近解集。统一框架既涵盖了经典意义下的PPA算法、用于求解线性约束凸优化问题的增广拉格朗日乘子法(ALM)和处理两个可分离块凸优化问题的乘子交替方向法(ADMM)等耳熟能详的算法,还为多块可分离凸优化问题的求解提供了多种方法。通过掌握这一并不复杂的统一框架,者可以根据可分离凸优化问题的具体特点,自行设计预测-校正方法求解。
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
计算,实际上是解决问题的过程。人们希望用计算机能找到解决一切问题的方法,因此在计算领域建立了算法理论和算法模型,并根据各种问题提出具体算法。而计算的复杂性是现代数学中最令人着迷的领域之一。本书通过几个经典的计算问题:哥尼斯堡七桥问题、汉密尔顿路径问题、整数分解和国际象棋问题,浅探计算的魅力。
《并行计算》是分布式并行计算的算法设计和消息传递并行编程的入门教程。《并行计算》详细介绍了包括MPI基础知识、求解线性代数方程组的共轭梯度法的并行算法实现、并行程序的效率和可扩展性、进程组和通信器操作、求解三对角线性代数方程组的追赶法、求解偏微分方程的算法并行化方法等相关内容;还分析了并行程序可扩展性差的主要原因,为读者提供了全面的并行计算知识体系和解决方案。《并行计算》提供了典型科学计算问题的并行算法与程序设计实例,并介绍了国际上流行的科学计算软件、工具及平台。内容从简到繁、循序渐进,可帮助读者逐步掌握并行计算技能,解决学习和工作中的问题。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《广义逆的理论与计算》研究了广义逆的新理论和计算方法,主要包括加权M-P广义逆,加权DRAZIN逆和核逆的扰动理论及广义逆的神经网络算法,其中介绍广义逆的神经网络算法的专著在国内比较少。 《广义逆的理论与计算》适合计算数学、应用数学的研究生和科研工作者参考阅读。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
本书是明朝三大数学名著之一,是我国数学史、珠算史上百科全书式的重要著作,内容几乎涉及现代初等数学、珠算的所有内容,故称为 大全 。 本书适合大中小学数学教师及广大数学爱好者阅读.
《边缘计算模式》共13章。第1章和第2章介绍边缘计算模式的相关概念和发展现状。第3~5章阐述边缘计算的新型框架,包括边缘联盟计算架构、混合边缘计算架构、移动节点辅助的边缘计算架构。第6~9章系统论述边缘存储理论与方法,包括边缘计算的数据协同存储和访问服务、数据缓存高效索引机制、跨层混合数据共享机制,以及安全可信的边缘存储架构。第10~13章系统论述边缘计算的任务调度理论方法,包括边缘计算的在线任务分派和调度方法、复杂依赖性应用分派和调度方法、服务链请求调度方法、服务增强模型。
非线性规划问题在经济和工程等领域中普遍存 在,具有广泛的应用价值。随着社会的发展,非线 性规划问题的规模和结果也越来越复杂,要获得相 应问题的 解也变得越来越困难。 化方法是 解决这些问题强有力的工具,人们提出了许多求解 非线性规划问题的 化方法。这些方法在机理上 大致可以分为确定性 化方法和随机性 化方 法两类,这两种方法各有千秋。 本书介绍几个求解非线性规划问题的确定性 优化方法和随机性 化方法。全书内容共10章, 分为PARTⅠ和PARTⅡ两部分。PARTⅠ针对比式和规 划、多乘积规划、几何规划等工程上出现的 化 问题,提出了几个有效的分支定界算法,并证明了 算法的收敛性,该部分属于确定性 化方法。 PARTⅡ针对群智能 化方法中的萤火虫算法及粒 子群算法的改进做了研究,探讨了收敛性等相关问 题,该部分属于随机性 化
本书弱化了理论的严密证明,代之以简单的推导与方法的说明,加强了例题的示范作用,是浙江工业大学教学改革的系列教材之一。《BR》 本书主要介绍数值计算的基本理论与方法,内容包括数值计算引论、解线性方程组的直接法、解线性方程组的迭代法、非线性方程(组)的数值解法、插值法、逼近、数值积分与数值微分、常微分方程初值问题数值算法等。对于数学系的学生,教学内容可侧重算法的理论部分;对于一般工科的学生,教学内容可侧重算法的实用性和实验性部分。
微分代数方程是一个非常重要的研究方向,目前的科研非常活跃。该书是这一领域具有很高学术水平的著作,对国内从事该领域学习和研究的学生及科研人员将会有很高的参考价值。
无
Nash平衡是非合作博弈的核心概念之一,如何实现Nash平衡已成为国际博弈论领域的研究热点和前沿之一。《非合作博弈Nash平衡实现算法:基于群智能和学习机制的视角》主要围绕矩阵博弈、双矩阵博弈、广义博弈、主从博弈、多目标博弈、随机博弈和平均场博弈等非合作博弈模型的Nash平衡实现开展研究,借鉴了群体智能和学习机制的思想,分别设计了免疫粒子群算法、协同免疫量子粒子群算法、混沌鲸鱼黏菌算法、改进精英机制多目标遗传算法、*小化后悔值学习算法、短视调整过程学习算法等,并深入探讨了群智能和不同学习机制实现非合作博弈模型Nash平衡的理论和应用。《非合作博弈Nash平衡实现算法:基于群智能和学习机制的视角》内容涵盖了非合作博弈的主要模型,特别是涵盖了关注度较高的多目标博弈、随机博弈和平均场博弈等模型,并且融合了数学、计