本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算方法。第二版增加了直写答案式简化计算方法,更有利于大众应用。介绍方式由浅入深、通俗易懂。并详细讲解了方法的论证过程,有益于读者理解和掌握应用,利于普及。掌握了本算法不仅能迅速提高学生的心算能力和计算速度,更有利于提高学生的逻辑思维能力、激发学生的学习兴趣。本方法若能广泛应用于中小学
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
本书旨在介绍寿险精算数学的基本理论。通过阅读本书,读者可以了解建立寿险经验生命表的基本方法和步骤,学会计算连续型和离散型寿险保单的趸缴纯保费及生存年金的精算现值;并在此基础上计算均衡纯保费。本书导出了各种情况下准备金的计算方法、总保费的计算、总保费准备金的计算和准备金的几种修正方法。 本书是对2001年版寿险精算数学的修订。该书旨在介绍寿险精算数学的基本理论。本书导出了各种情况下准备金的计算方法、总保费的计算、总保费准备金的计算和准备金的几种修正方法。讨论了在独立性假设下个体的联合生存状态和最后生存状态的相关精算变量及关系,还进一步探讨了在非独立情形下的分布规律,并引入了两个寿险生命参数模型,Frank's Copula模型和Common Shock模型。介绍了多元风险模型与伴随单风险模型,推导了多元风险模
本书讲述各种数值逼近的理论和方法。除介绍传统的数值逼近内容外,还介绍了多元插值、多元直交多项式、高维数值积分、多元样条,以及曲线、曲面的生成与逼近等多种新理论和新方法,其中还包括了作者的部分科学研究成果。 本书可作为大学本科计算数学专业教材,也可作为其他理工学科硕士、博士研究生的教材或参考书。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
《数值分析全真试题解析(2007-2012)》,本书对东南大学近6年来工学硕士研究生、工程硕士研究生学位课程考试、工学博士研究生入学考试“数值分析”以及理学博士研究生入学考试“高等数值分析”的试题作了详细的解答, 部分题目还给出了多种解法. 内容包括误差分析、非线性方程求根、线性方程组数值解法、函数插值与逼近、数值微分与数值积分、常微分方程初值问题的数值解法、偏微分方程数值解法以及求矩阵特征值的幂法。
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
《iCourse教材:数值计算方法》是与“爱课程”网上刘春凤教授主讲的国家精品资源共享课“数值计算方法”配套使用的教材,基本内容是依据数值计算方法课程教学基本要求确定的,力求满足“重概念、重方法、重应用、重能力”的培养目标。 《iCourse教材:数值计算方法》主要介绍的是数值计算方法中基础性和应用较广的方法,包括数值计算的基本问题、函数插值与逼近、数值微分与数值积分、线性代数方程组的直接解法和迭代解法、非线性方程的数值解法、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。每章都绘制了思维导图,配备了章导语和习题,并有机地引入Matllematica的相关内容,配置了适量的应用范例。 《iCourse教材:数值计算方法》力求内容简明、计算快捷、结果直观,以提高读者科学计算的能力。 《iCourse教材:数值
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括数值逼近,插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题、刚性问题与边值问题数值方法,以及并行算法概述等。本书是为学过少量《计算方法》的理工科研究生学习《数值分析》而编写的教材。内容较新,起点较高,叙述严谨,系统性强,偏重数值计算一般原理。每章附有习题及数值试验题,附录介绍了Matlab软件以便于读者使用。本书可作为理工科研究生《数值分析》课程的教材或参考书,也可供从事科学与工程计算的科技人员学习参考。
An early experiment that conceives the basic idea of Monte Carlo pu-tatios is known as "Buffon'needle",first stated by Georges Louis Leclerc Comte de Buffon in 1777.In this well-known experiment,on throws a needle of length l onto a flat surface with a grid of parallel lines with spacing.It is easy to pute that,under ideal conditions,the chance that the needle will intersect one of the lines in .Thus,if we lep pN be the Proportion of "intersects"in N throws,we can have an estimate of π as wjocj will"converge"to π as N increases to infinity.
THE major part of thiook (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which haeen only slightly changed in the present edition.
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
云计算正在成为一种通用的计算技术,它将深刻地改变地球科学应用的传统方法和模式,解决21世纪地球科学面临的诸多挑战。本书通过17个章节及实例,从5个方面为读者介绍了全面的空间云计算知识,包括:(1)云计算的基本概念和为什么地球科学需要云计算?(2)如何将简单的地球科学应用迁移到云计算?(3)如何使云计算支撑复杂的地球科学应用?(4)如何测试一个云服务是否已准备好支撑地球科学应用?(5)什么是需要进一步研究的问题和需求?本书可为读者提供系统的空间云计算知识,指导读者了解空间云计算,应用空间云计算,进一步研究空间云计算。
符号计算软件是能做高等数学和初等数学题目、画数学函数和数据的图形以及编写程序的应用软件系统。Mathematica以其友好的界面而成为流行的符号计算软件。在符号计算系统的软件环境下我们可以轻松愉快地用计算机进行数学公式推导、数学计算和图形变换。 由张韵华、王新茂编写的本书内容包括:如何应用Mathematica7做因式分解、数项求和、函数极限、不定积分、求解偏微分方程、求解线性方程组、计算矩阵的特征值和特征向量、矩阵分解、插值、拟合和统计等数学运算;如何用函数、数据、图元素画图;如何自定义函数和写程序构建程序包。 本书可作为高等院校学生学习Mathematica的教材,数学实验和数学建模课程的辅助教材,数学教学的辅助工具,科研和工程技术人员科学计算的参考教材。
“青少年心灵治愈故事系列”,包含了六本书,收录了近四百个精彩的小故事,囊括了勇气、诚信、认知自我、专注、友爱、情绪管理等各个不同的情商培养主题,是暖心的读物,写给正值青春前期,在经历某种程度的迷茫与疼痛的人。 李加臣编著的这本《说话要算数》就是该系列丛书之一,精心选编了数十个精彩的以“诚信”为主题的小故事。这些故事,或出自一些对后世有着深远影响的历史事件,或来自古今中外名圣先哲们的生活片段。书中的每个故事都不长,却以通俗的语言和生动的方式诠释着本来简单的人生真谛与深刻道理。每个故事都有“心灵物语”和“心灵加油站”两个板块,为读者提供了一种阅读引导,这里既阐述了故事的内涵,也给了读者静心思考的空间。每个故事都配有精美插图,美图美文,带领读者走进美好的故事世界。
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科本科及研究生
本书主要介绍了一般的有限元基本理论和有限元计算技术,以及在弹性力学、结构动力学、流体运动、传质与传热等问题中的有限元分析方法和典型应用;介绍了非线性有限元分析方法,包括材料非线性、接触非线性、大变形大应变和结构非线性等方面的有限元理论内容;还介绍了其他一些与有限元方法相关的现代数值计算方法。另外,书中突出了有限元方法的计算技术,如在MATLAB下的编程方法;介绍了多种工程应用的实例和研究结果。 本书内容精练,以工程中的问题类型为脉络介绍有限元的应用,以机械工程、土木工程等工科相关专业本科生、研究生为读者对象,亦可供从事数值分析的工程技术人员参考。