本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
本书是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等;同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
无
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
非线性规划问题在经济和工程等领域中普遍存 在,具有广泛的应用价值。随着社会的发展,非线 性规划问题的规模和结果也越来越复杂,要获得相 应问题的 解也变得越来越困难。 化方法是 解决这些问题强有力的工具,人们提出了许多求解 非线性规划问题的 化方法。这些方法在机理上 大致可以分为确定性 化方法和随机性 化方 法两类,这两种方法各有千秋。 本书介绍几个求解非线性规划问题的确定性 优化方法和随机性 化方法。全书内容共10章, 分为PARTⅠ和PARTⅡ两部分。PARTⅠ针对比式和规 划、多乘积规划、几何规划等工程上出现的 化 问题,提出了几个有效的分支定界算法,并证明了 算法的收敛性,该部分属于确定性 化方法。 PARTⅡ针对群智能 化方法中的萤火虫算法及粒 子群算法的改进做了研究,探讨了收敛性等相关问 题,该部分属于随机性 化
机构的自由度计算是机构的一个基本问题。对于将参与方方面面的机械创新活动的机械工程专业的学生和机械工程师,能够正确分析机构自由度是其不可或缺的知识和能力。然而,至今百余年来人们始终未获得一个普遍适用的公式,使自由度分析遇到困难。 这里向读者介绍黄真首创的基于反螺旋理论的自由度通用原理和公式。 本书将以螺旋理论*基础的知识和众多的各种类型的实际例子,将这个新的自由度统一原理介绍给读者,让他们了解*必要的螺旋理论和自由度基础知识,并能够正确且简洁地对其实际工作中遇到的各种各样的机构进行正确的自由度分析。 本书分6章,主要内容包括螺旋理论基础、基于反螺旋的自由度普遍原理,以及平面机构、并联机构、一般空间机构和复杂网络机构的自由度分析。 本书除可作为机械工程专业大学生和广大机械工程师的参考
本书介绍了移动网格方法的历史和现状,作者根据这几年对移动网格方法的一些研究体会,写成此书。本书研究的移动网格方法要做的就是保持单元或节点数不变而通过重新分布节点位置实现自适应目标。特别地,我们将把动态网格与求解过程结合起来,用最适合求解问题的方式来生成网格,即在解的梯度大的地方网格自动加密,而在解的梯度小的地方网格自动变稀疏,其基本目标是改进计算精度,并使数值误差分布趋于均匀。本书侧重自适应网格技术,在流体计算、相场界面问题、双曲守恒律方程等问题上都有成功的应用。本书易读性强,深入浅出,提供代码,使读者容易上手实践。
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础);第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
《微分方程数值解法(第4版)》是编者在《微分方程数值解法》(第三版)的基础上修订而成的。本次修订的宗旨是加强方法及其应用,考虑到不同院校的需要,仍然保留常微分方程数值解法这一章。为了更方便教学,采取先介绍有限差分法,后介绍GMerkin有限元法,去掉原来的第七章,将离散方程的有关解法与椭圆方程的差分法和有限元法合并,同时增设了一些数值例子,适当删减部分理论内容,突出应用,降低难度。《微分方程数值解法(第4版)》包括六章,章为常微分方程数值解法,第二章至第四章为椭圆、抛物和双曲偏微分方程的有限差分法,第五章、第六章为Galerkin有限元法。《微分方程数值解法(第4版)》是为信息与计算科学专业编写的教材,也可以作为数学与应用数学、力学及某些工程科学专业的教学用书,对于从事科学技术、工程与科学计算的专
本书围绕数据模型及计算主线,按共性算法案例、数据工程领域中数据计算案例展开.第1章(概述篇)概述了数据建模与计算的思想与方法,提出了数据建模的多模型融合思想和数据计算的多算法集成策略,让模型和算法点亮数据的光芒.第2章到第6章(共性算法篇)例举了若干共性数据计算方法,包括几何模型重建、图像处理中的优化算法、数值微分算法、主成分分析方法与改进、数据拟合的梯度型优化算法.第7章到第17章(数据建模与计算篇)围绕统计生成性模型与数据机理模型融合、多算法集成创新主线,例举了十一个数据工程领域数据建模与计算的案例,涉及医学、金融、量化投资、图像处理、智能决策、音乐流派分类、疫情数据分析、功能服装设计、海洋数据分析等领域的数据分析及应用.后记概括了本书的主要特点和核心内容,强调了数据模型融合和算法集成是上策,对未来进