本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书**价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
《 数学中的小问题大定理 丛书(第四辑):轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法.在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。 《 数学中的小问题大定理 丛书(第四辑):轨迹》可供中学数学教师参考,也可供中学生课外阅读。
《计算方法与几何证题》由谢彦麟编著。 《计算方法与几何证题》共分十一章,内容包括:借助基本量把证明题化为计算题的基本过程;用三角计算证题;用解析几何计算证题;解定值问题及极值问题;解较难的几何计算题(实际是未给出结论的证明题);用解析几何计算求轨迹;证动直线(圆)过定点或切于定圆,动圆与定直线相切;用复数、向量计算解几何题;证明二次曲线的几何性质;证明不等关系及杂例;用计算方法解立体几何题等。附录中介绍了几何定理证明机械化的过程。
本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
有限元结构分析在大型工程计算中至今仍居重要地位。本书系统地论述了有限元方程组形成和求解的各个步骤的并行计算格式和并行程序设计技巧,着重介绍了有限元分析的并行计算、大型稀疏有限元方程组直接解法的并行处理、大型稀疏线性方程组预处理共轭梯度法的并行处理、矩阵向量积的并行计算,还概括了近年来有关研究的主要成果,是一部具有较高理论水平和实用价值的著作。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
无
本书是同济大学计算数学教研室几位老师集体智慧的结晶,内容涉及数值计算的基本内容,如函数插值与函数逼近、线性与非线性方程(组)的求解、数值积分与微分、矩阵的特征值与特征向量的计算、常微分方程的近似数值解,还阐述了当今科学与工程研究中经常遇到的数值计算问题求解的新方法,如快速傅里叶变换、蒙特卡罗*方法(高维积分计算)、数值求导的稳定算法、大型线性方程组的分块迭代算法等;在介绍一些重要的典型算法时,附上了在工程中广泛使用的MATLAB程序书后附有丰富的习题和数值实验题并提供了配套的习题解答。 本书适合作为高等院校本科生和工科研究生“数值计算”课程的教材,也适合相关科研人员参考。
本书阐述自适应Fourier分解(AdaptiveFourierDecomposition,AFD)及单分量函数论的数学理论及应用。按照理论发展的顺序,第3章单分量函数论应该在第2章AFD理论之先的,后者作为单分量函数分解的特殊情况。尽管如此,我们选择优先讲述AFD的理论。第3章通过单复变量几何分析的研究建立了单分量函数的理论。第4章讲述单分量函数论对数字信号处理的奠基性的应用,其中包括由AFD引出的Dirac型时间-频率分布的理论,以及对经典Heisenberg型测不准原理的改进。在第5章中,应用调和分析及单复变量分析方法,我们发展了前移及后移不变子空间的理论,并将该研究用于频带保持、相位重构、以及Bedrosian方程式的解。AFD与单分量函数的思想贯穿一维单复变结构下的两个典型流型,即圆与直线(第2章);高维两种复结构(Clifford代数及多复变量)之下的Euclid空间、实球壳以及多环面
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
本套丛书是在《计算方法丛书》基础上重新整理和编辑加工而成的典藏版,包含《计算方法丛书》的1-29卷。本套丛书稿件在原电子稿基础上统一调整为32开本,封面统一设计,但正文内容(包括格式)未做任何调整。本套丛书将统一定价,统一包装,每本书不单独定价和包装。
本书系统介绍线性规划、整数线性规划、无约束**化和约束**化的基本理论和方法,还介绍经济、金融、信息处理、统计、几何等领域中的具体优化模型,以及MATLAB软件包中部分优化工具箱的操作方法.
【内容简介】 本书汇集了第46届至第50届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础);第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。