本书涵盖了2016 2025年考研数学一、数学二、数学三的全部真题,精选了1987 2015年考研各卷种中有一定难度或代表性的真题,并配有详细解析,供考生进行练习.本书将真题按考点分类,每一节均分为十年真题、考点分析、知识梳理、方法探究、真题精选五个部分.不但梳理了《全国硕士研究生招生考试数学考试大纲》所要求的每一个知识点,而且通过例题详细讲解了主要的方法,并对每一节内容作了小结,归纳考研近年来的命题趋势,旨在使考生全面准确地了解考研数学。
证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
本书是*数学家保罗·哈尔莫斯的自传,也是他为自己所处的“数学时代”写下的历史掠影。哈尔莫斯因在泛函分析、遍历理论、测度论、布尔代数理论等领域的贡献著称于世。他不仅对整个数学领域的研究保持着浓厚兴趣,而且始终关注着数学世界的人与事。读者可在本书中看到上百位数学家的身影。哈尔莫斯讲述了他们的趣闻轶事,为他们拍照留念,让读者对这群数学家产生*而感性的认识。这本书堪称20世纪的数学“社会史”。同时,作者谈到如何学习、如何做研究、如何营造良好的学习和学术环境,讲述了自己对数学的理解,以*身经历告诉读者,什么是真正的数学家和数学研究,以及怎样才能成为一名数学家。 本书适合数学爱好者、数学研究人员,以及对数学史和科学史感兴趣的大众读者阅读。
本书以通俗易懂的语言和鲜活的案例,阐述博弈论的基本理论框架和主要知识点。全书分成四大部分:第一部分主要论述在同步一次囚徒困境博弈中,尽管合作对整体而言是最优的,但不合作却是个体的最优策略。书中对困境的机理及其在现实社会生活中的具体表现做了分析,还介绍了同步一次博弈的其他一些有趣场景和案例。第二部分讨论重复博弈,围绕如何从困境走向合作展开,重点介绍在重复博弈中,自利行为和长期主义可以催生合作这一重要原理及其具体应用。同时还介绍了混合策略的基本思想。第三部分讨论序贯博弈。参与者行动有先后顺序,那些与自身利益相冲突的决策,会在其他参与者行动之后发生变化。参与者可以通过承诺行动改变竞争对手的预期,以促使其选择对自己有利的行动。第四部分是不完全、不对称信息下的博弈,主要阐
The content and treatment in this edition remain in accordance with what was said in the preface to the first edition (see below). My chief care in revising and augmenting haeen to comply with this principle. Despite the lapse of thirty years, the previous edition has, with very slight exceptions, not gone out of date. Its material haeen only fairly slightly supplemented and modified. About ten new sections have been added.