本书探讨了近代中国如何参照西学,重新类分学术,从而建立新的系统,奠定今天的学术发展格局。这个过程既推动了中国学术融入世界,也改变了系统逻辑和传统思维。 知识分类是一个切入点,于上透视西方文明如何在“物之序”的层面冲击并改造固有学术,把现代学科看成须在后殖民意义上予以检省的文化冲击的结果;于下把学科概念、学术范畴、科目关系、系统结构、知识形态等分散的关节点,整合成由点到面、由外及内的网络联动体系,深入细部的同时总揽全局。 对知识纲目、系统结构、学术理念变化与重组的研究,展现了单一学科史难以传达的学术路径和知识全景图的改易,有助于深入把握近代学术乃至中国社会的转型与再造,有利于重新检省国人对西学的理解与接受,推动今后的学术发展与文明对话——既包括中西文化的平等交流、古代传
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。本书介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,本书详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。本书可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:第1版 装帧:装 开本:16 商品标识: 书名:写给全人类的数学魔法书 定价:32元 作者:永野裕之 出版社:新世界出版社 出版日期:2013-6-1 0:00:00 ISBN:9787510441912 字数: 页码:209 版次:di1版 装帧:装 开本:16 商品标识: 《写给全人类的数学魔法书》编辑推荐:全日本校长永野裕之*新力作! 全日本受欢迎的数学书! 日本yamaxun一般数学类别*!冲破惯常的数学学习法,告诉你数学到底是个什么东西,为什么 越是死记硬背公式,就越学不好数学 ;书中详尽介绍10种*基本解题思路,只要熟练掌握,就能轻松应对各种类型数学题,尤其是难度较高的高考真题;书中回答了 怎样听课 怎样
本书是就各地区高考数学压轴题所编写的破题攻略,面向中等程度及以上的学生。全书将近几年出现频率较高的热点试题进行分类总结,形成套路,通过典型例题深度剖析讲解注重数学各知识点间的联系,做到透析考情考向、提升解题技能,拓宽解题思路。并在每个章节后面设置了“学以致用”部分练习,配有对应高考真题、部分优秀模拟试题加以训练巩固。供学生举一反三练习,巩固该知识点。 书中部分题目配有视频讲座。
本书是解读望月新一“跨视宇Teichmüller理论(IUT理论)”的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本“IUT理论”的解读手册。书中侧重解读“IUT理论”的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与*数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解“IUT理论”的入门读本,也适合作为学生了解数学思考方法的参考读物。
内容简介 自文明诞生以来,人类从未停止过对“无穷”的探索和研讨。你可能需要一本指导手册,带你开启无穷领域的无边漫游! 在物质世界中,无穷是否真的存在?多重宇宙的猜想是不是空穴来风?怎样制作无尽的相似图形?逻辑系统永远不能自洽?无穷小有多小?无穷大又有多大? 本书共收录63个主题,以思维漫游的形式为读者介绍“无穷”的奥秘。同数学家、哲学家一起讨论逻辑相悖的话题,了解革新艺术、计算机,甚至人类认知领域的经典数学理论。在这场虚拟的漫游旅途中,读者将在无限拓展思维、认知与情感的同时,收获更加灵活、多元的视角,看待已知及未知的世界。 目录 引 言 ·欧几里得完美的证明 对无穷岛的搜寻 健康警告 【旅程的开端】
本书是教研员、优秀教师、命题专家和数学解题爱好者等集体智慧的结晶, 本书的题目都是来源于 2000 人 QQ 群“高中数学解题研究会”群友精挑细选的全国各地的高考试题、模拟试题、自编题和改编题,即群内的 “ 每日一题 ” 。每道题都是在群里经过千人大讨论,最后整理出精妙典型且适合学生的解法(忍痛删去了高等数学的解法),再筛选优质题目和解法汇聚而成 的解题秘籍。 编写组经过一年多的反复筛选,最后精选百题、精彩千解,将其中最精华的部分精雕细琢成书奉献给亲爱的读者朋友们,以分享解题之快乐! 目录 第 1 讲 形式各异最值题 方法多样显实力 第 2 讲 多姿多彩恒成立 精彩各异策略多 第 3 讲 寻觅函数性质特征 巧设构造突破难点 第 4 讲 双变量求最值 多角度有妙解 第 5 讲 活用三
《基因组学概论(第二版)》的内容框架设计独具匠心,作者把基因组比拟为生物学研究的集线器。由此分层次介绍了DNA、蛋白质序列和结构、基因组、蛋白质组、转录组和系统生物学内容,也分别对原核生物、真核生物、人类基因组结构和特性进行了介绍和比较,并将基因组变化和进化联系起来。《基因组学概论(第二版)》的布局特别适合教学需要,每章均先指明学习目标,学习内容有章有节,循序渐进,逐步展开,关键字设有标签进行简要说明。《基因组学概论(第二版)》的图表丰富,有助理解,每章结束时提供了参考文献,让有兴趣的读者深究;布置的练习,可帮助读者复习和进一步思考,而网络问题则能引导读者借助于各种网络工具深入学习和研究基因组。
《基因组学概论(第二版)》的内容框架设计独具匠心,作者把基因组比拟为生物学研究的集线器。由此分层次介绍了DNA、蛋白质序列和结构、基因组、蛋白质组、转录组和系统生物学内容,也分别对原核生物、真核生物、人类基因组结构和特性进行了介绍和比较,并将基因组变化和进化联系起来。《基因组学概论(第二版)》的布局特别适合教学需要,每章均先指明学习目标,学习内容有章有节,循序渐进,逐步展开,关键字设有标签进行简要说明。《基因组学概论(第二版)》的图表丰富,有助理解,每章结束时提供了参考文献,让有兴趣的读者深究;布置的练习,可帮助读者复习和进一步思考,而网络问题则能引导读者借助于各种网络工具深入学习和研究基因组。
本书是作者根据新的研究生入学统一考试大纲,结合多年的教学经验和考研辅导经验精心编写而成的。主要内容包括函数、极限与连续、导数与微分、原函数与不定积分、定积分、常微分方程、向量代数与空间解析几何、多元函数的概念及微分、重积分、曲线积分、曲面积分、数项级数、函数项级数等。每部分内容均按照“知识综述与应试导引”、“问题集粹”、“自测与模拟题”等进行编排。 本书主要针对参加研究生入学考试的理工类与经济类考生,同时也可作为本科和专科学生的教学辅导用书。
本书是工科硕士研究生教材,简明地阐述了模糊数学的基本理论和基本方法。全书共11章,内容包括:F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书也可作为本科高年级教材,或供工程技术人员自学参考。
《考研数学真题分类详解(数学一)》适合数学一考生在考研全程使用,全书覆盖了数学一考试大纲的内容,汇集了1987-2017年的数学一真题,具有较强代表性。通过本书的训练,不仅可以模拟考场真实环境,了解考研数学题目的结构、难度和特点,增加应试经验与技巧;并且可以查漏补缺,将考研数学的知识点与解题方法穿起来,形成体系。
考研数学高等数学一本全,对考研大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析,注重对所学知识的应用,以便能够开阔考生的解题思路,使所学知识融会贯通,并能灵活地解决问题。本书优化设计了数量的练习题,巩固所学知识,提高实际解题能力,实现知识掌握、习题解答的统一。
本书以考试大纲要求为依据,参考高等数学教学大纲。按章节知识点与解题方法分类,集中总结了考试重点内容,并针对学生易混淆的概念一一做了点拨。为学生系统地掌握数学知识,了解考研试题类型,掌握解题技巧提供颇为经典的辅导。整本书的主要写作目的是为报考硕士研究生入学考试考生复习高等数学提供高效指导。也可供高等工科院校学生、教师参考。
在考研数学的备考过程中,一般分为基础阶段,强化阶段和冲刺阶段。每个阶段选择不同的教材复习,做不同的难度的习题是很重要的,可以起到提高效率,建立信心,事半功倍的作用。 考生在基础阶段(3--5月)一般使用同济大学出版社出版的高等数学,复习基本概念,基本原理,公式,并且做课后习题。课后习题有些不属于考纲内容,例如用极限的定义的证明题,近似计算等;有些课后题又过于简单。强化阶段(6--10月底),把握整体,形成体系,总结题型,方法,重点,难点。这个阶段应选择一本较好的习题集进行系统训练。要逐步学会灵活运用三基来解决问题,加强综合题的练习,以提高所学知识分析问题和解决问题的能力。
《基因组学概论(第二版)》的内容框架设计独具匠心,作者把基因组比拟为生物学研究的集线器。由此分层次介绍了DNA、蛋白质序列和结构、基因组、蛋白质组、转录组和系统生物学内容,也分别对原核生物、真核生物、人类基因组结构和特性进行了介绍和比较,并将基因组变化和进化联系起来。 《基因组学概论(第二版)》的布局特别适合教学需要,每章均先指明学习目标,学习内容有章有节,循序渐进,逐步展开,关键字设有标签进行简要说明。《基因组学概论(第二版)》的图表丰富,有助理解,每章结束时提供了参考文献,让有兴趣的读者深究;布置的练习,可帮助读者复习和进一步思考,而网络问题则能引导读者借助于各种网络工具深入学习和研究基因组。