本书是一部非常经典的介绍有限群线性表示的教程,原版曾多次修订重印,作者是当今法国最突出的数学家之一,他对理论数学有全面的了解,尤以著述清晰、明了闻名。本书是他写的为数不多的教科书之一,原文是法文(1971年版),后出了德译本和英译本。本书是英译本的重印本。它篇幅不大,但深入浅出的介绍了有限群的线性表示,并给出了在量子化学等方面的应用,便于广大数学、物理、化学工作者初学时阅读和参考。
作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
本书内容包括:欧氏平面的拓广;一维射影变换;二维射影变换;二次曲线;变换群与几何学;三维射影几何;几何基础发展简史;几何;欧氏几何;非欧几何;一般域上的射影几何。每一章都包括内容提要和习题两部分。习题答案、提示和解答集中在本书的后面。 本书与《高等几何》(梅向明等编,高教出版社1983年)配套,是师范院校数学专业本科生的教学参考书。
本书是在吴光磊编“空间解析几何教程”和吴光磊、田畴编“平面解析几何补充教程”的基础上修订而成的。本教材的特点是简明和适于教学,内容包括:空间直角坐标、平面和直线,向量代数,二次曲面,正交变换和仿射变换,附录Ⅰ:二次曲线的一般理论,附录Ⅱ:射影几何初步。 本书可作为综合性大学和师范院校数学系学生的教材,也可供相关专业选用。