《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
数字经济已成为各国经济增长的新动能,并上升为国家发展战略,各国政府和人民对数据跨境流动安全问题的关注与日俱增。本书系统介绍了全球数据跨境规则的产生背景及其发展演变的脉络,重点分析了全球主要国家和地区数据跨境治理规则的内容和相互之间的异同,特别介绍了欧盟、美国话语权下的数据跨境流动规则及规则间的弥合,也介绍了其他国际性文件及十余个重点国家和地区的立法现状,同时展望了全球数据跨境规则的未来走向,在此基础上对我国的数据跨境流动治理规则现状进行梳理,并对其实施与完善提出了相关建议。本书语言平实易读,主要以法律法规、执法部门的解释性指南、判决书等一手资料作为参考,介绍分析了国内外立法现状和法律实践。
R语言在心理语言学研究中的应用已经有相当长的历史,但什么情况下要对数据进行怎样的处理,模型应该如何构建,得到结果后应该如何科学地读取和规范地报告等问题仍未得到很好的解决,本书意在解决这些问题。 本书首先介绍了R语言基础知识、基本统计思路和初步数据整理,对经由真实眼动研究得到的数据进行清理、转换和描述性统计,以及数据可视化等操作,然后介绍了线性混合模型和最大随机效应,结果解释、整理和提升,power分析和Bayes分析在R语言中的实现;接着介绍了线性混合模型和重复测量方差分析结果的比较;最后介绍了多种眼动指标整理的方法。
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
本书试图较全面地介绍大数据技术的基本原理和方法,包括以统计模型为主的各类数据模型以及它们的计算方法,同时还将介绍这些方法在一些领域(如人工智能)中的应用。
本书首先基于结构化国际科技资源信息数据库及非结构化国际科技资源信息,研究国际科技资源信息的数据抽取技术、学科与技术分类及数据库构建方法;其次,基于文献计量、专利计量、文本挖掘、研究价值图谱、技术路线图方法,研究构建国际科技资源监测分析方法和模型;再次,基于聚类分析、社会网络分析、地理信息系统等方法,研究国际科技资源信息监测分析的可视化方法和模型;后,介绍了国际科技合作资源监测系统和国际科技资源监测地理信息系统的开发及应用。
《经济学人》杂志年度推荐的三大可视化图书之一 《大数据》作者、《经济学人》大数据主编肯尼思·库克耶倾情推荐,称赞其为“关于数据呈现的思考和方式的颠覆之作” 亚马逊数据和信息可视化类图书排名第3位 畅销书《鲜活的数据》作者近期新力作及姐妹篇 第一本系统讲述数据可视化过程的的普及图书 这是一本教我们如何制作完美可视化图表,挖掘大数据背后意义的书。作者认为,可视化是一种媒介,向我们揭示了数据背后的故事。他循序渐进、深入浅出地道出了数据可视化的步骤和思想。本书让我们知道了如何理解数据可视化,如何探索数据的模式和寻找数据间的关联,如何选择适合自己的数据和目的的可视化方式,有哪些我们可以利用的可视化工具以及这些工具各有怎样的利弊。 作者给我们提供了丰富的可视化信息以及查看、探索数据的多元视角
本书以数据为研究对象,论述了从数据起源到数据未来的全过程,通过对数据的研究,揭示了物质、数据与信息之间的深刻关系,构建了一门独立的数据科学体系。本书对数据与数据科学的基本原理与规律、数据的基本定律与基础问题、数据与数据科学的基本方法等做了全面、细致的探索,提出了物质定义数据、数据定义信息等重要观点。
本书以数据挖掘为应用载体,按应用频率的高低,系统地介绍分治算法、贪心算法、搜索算法和动态规划算法。同时,介绍算法分析所用的渐近符号及常用的分析方法,包括递归分析方法、非递归分析方法。本书的特点是结合作者及其团队研究的数据挖掘问题,注重介绍算法的基本思想及算法应用的启发性。
本书通过选购笔记本电脑的案例引入数据包络分析(dataenvelopmentanalysis,DEA)的基本概念和模型,并运用简单的EXCEL模型让读者更易理解和运用DEA。本书着重阐述如何将DEA作为一种运营分析工具,进行绩效评估,找出基准标杆。探讨的主题包括:平衡的基准,昀佳实践,相对效率的概念及绩效提升。特别地,本书探讨的数据分析方法能够帮助一个组织重新审视它对生产效率高低的已有观点是否合理,并为组织不断改进提供指导。本书是市面上唯一本不要求读者具备线性规划和线性代数知识,就可以熟练应用DEA方法的DEA方法指导用书。
本书分10章,全面介绍了Hadoop云技术及其在光网络研究方面的真实案例。读者通过本书的学习,可以掌握搭建及维护Hadoop平台的相关知识和技术。
当下,由于强大的数据挖掘软件平台很容易获得,草率地使用数据挖掘方法和技术将导致挖掘的结果混淆难解。这种失误往往源自盲目使用“黑盒子”方法进行数据挖掘,而好的避免途径就是使用“自盒子”方法,理解隐藏在软件背后的算法和统计模型结构。 本书分为7章,第l章是对降维方法的介绍,这是数据挖掘技术的一个先决条件;第2章至第6章为经典的数据挖掘算法和技术,包括一元回归模型、多元回归模型、逻辑回归模型、贝叶斯网络分析以及遗传算法,通过实际案例引导读者由已预处理的数据使用不同的挖掘技术从而得出所需结论;第7章为基于数据挖掘过程模型上的多个案例研究,通过多个领域的案例来阐述算法和技术是如何被运用的。 本书可作为数据挖掘课程教学用书,适用于高年级本科生和研究生的教学,也可供科研人员参考使用。
本书是 十三五 国家重点图书规划 大数据科学 丛书著作。 全书从管理的角度分时代篇、概念篇、学术篇和实践篇4篇,对大数据领导者的研究内容展开探讨。本书共10章,主要内容包括:大数据的概念和特点,大数据时代的机遇与挑战,首席数据官的兴起和内涵,首席数据官的理论基础、角色以及与组织绩效的关系,首席数据官需求评估和岗位设计,中国的大数据战略以及对首席数据官的访谈实录。对于业界人士,可以借助本书深入理解首席数据官的角色和岗位职责;对于研究人员,可以通过本书了解首席数据官的理论基础和研究方向。 大数据科学 丛书涉及大数据理论、技术、产业和管理的方方面面,旨在帮助相关专业的学者,特别是产业界了解世界大数据研究和应用的前沿,也可以作为教学之用。
卢辉编著的《数据挖掘与数据化运营实战(思路方法技巧与应用)》是目前有关数据挖掘在数据化运营实践领域比较全面和系统的著作,也是诸多数据挖掘书籍中为数不多的穿插大量真实的实践应用案例和场景的著作, 是创造性地针对数据化运营中不同分析挖掘课题类型,推出一一对应的分析思路集锦和相应的分析技巧集成,为读者提供“菜单化”实战锦囊的著作。作者结合自己数据化运营实践中大量的项目经验,用通俗易懂的“非技术”语言和大量活泼生动的案例,围绕数据分析挖掘中的思路、方法、技巧与应用, 整理、总结、分享,帮助读者深刻领会和掌握“以业务为核心,以思路为重点,以分析技术为辅佐”的数据挖掘实践应用宝典。 《数据挖掘与数据化运营实战(思路方法技巧与应用)》共19章,分为三个部分:基础篇( ~4章)系统介绍了数据分析
社交网络融合为社会计算等各项研究提供更充分的用户行为数据和更完整的网络结构,从而更有利于人们通过社交网络认识和理解人类社会,具有重要的理论价值和实践意义。社交网络中的关联用户挖掘旨在通过挖掘不同社交网络中属于同一自然人的不同账号,从而实现社交网络的深度融合。因此,关联用户挖掘是大型社交网络融合的基础问题,近年来已引起人们的广泛关注。考虑真实世界的朋友圈极具个性化,即现实中没有两个人具有完全一致的朋友圈,同时,相同的用户在不同的社交网络中往往具有部分相同的好友关系。本书基于社交网络的好友关系,充分利用好友关系的唯一性、稳定性和一致性,探索关联用户挖掘的方法。
本书通过浅显易懂的叙述方式和大量的图示,详细介绍了网站分析的关键技术要点,包括: 网站分析中重要的数据、网站数据分析的工具、网站分析工具的使用技巧以及分析数据的方法。本书共分为11章,首先让读者了解网站分析的作用和做网站分析必须了解的一些重要指标;然后介绍目前国内广泛使用的网站分析工具 百度统计,并对百度统计中各种维度的分析报告进行详细的阐述,包括推广报告、趋势报告、来源报告、网页分析报告、访客分析报告和各种优化报告,等等。本书内容丰富、语言简洁、图文并茂,适合广大网络营销初学者及从事网络推广的企业和个体阅读,是站长和广大网站运营人员的手册。
本书系统讲授数据挖掘的原理、主要方法及其Python实现,共分三部分:第一部分包含第1~2章,介绍数据挖掘的基本概念、流程和数据预处理;第二部分包含第3~11章,介绍经典的分类算法(包括朴素贝叶斯分类器、决策树、k-近邻、支持向量机等)、经典的聚类分析、关联分析、人工神经网络和Web挖掘等方法;第三部包含第12~14章,共有3个综合案例,包括泰坦尼克号生存数据分析、心脏病预测分析和旅游评论倾向性分析。
本书以图书馆信息化为基点,从理论与实际应用角度,介绍了数据仓库与数据挖掘的概念、方法及在图书馆的应用。主要内容包括:以图书馆自动化集成系统日常工作中产生的数据为基础,详细介绍了应用微软SQL Server 2012数据仓库与数据挖掘工具进行图书馆数据仓库开发、数据集成服务、联机分析处理及常见数据挖掘技术挖掘过程。本书注重实践性,可操作性强,可作为企事业单位数据仓库与数据挖掘工作人员、研究人员参考用书
商业智能是将企事业单位积累的数据转化为知识,帮助企事业单位做出科学决策的工具。蔡颖、鲍立威编著的《商业智能原理与应用》以“商业智能”应用为主线,全面系统地介绍了商业智能的基本概念、方法和技术,克服了以“数据挖掘” 技术为丰线的局限性,并以MS SQLServer作为数据仓库管理平台,以SQL Server Business Intelligence DeveloprnentVisualStudio作为商业智能开发平台,进行了丰富的案例演示。《商业智能原理与应用》可作为高等院校高年级本科生教材,也可作为MBA教材以及盯相关专业人员、市场营销人员、管理决策支持等实际经济管理领域实务工作者的参考用书。
本书紧扣“大数据”这一时代主题,着眼于侦查领域大数据运用在法律研究方面的空白,构建起包括思维、模式、方法等全方位的大数据侦查体系,同时对大数据侦查可能产生的法律问题进行探讨,为侦查实务中大数据的运用提供方法、法律理论及程序上的指导。
本书介绍了数据挖掘的基本概念,包括数据挖掘的常用算法、常用工具、用途和应用场景及应用状况,讲述了常用数据挖掘方法,如分类、聚类、关联规则的概念、思想、典型算法、应用场景等。此外,本书还从实际应用出发,讲解了基于日志的大数据挖掘技术的原理、工具、应用场景和成功案例。日志挖掘技术现在已得到了广泛的运用。通过以上内容的学习,读者将了解数据挖掘的基本概念、思想和算法,并掌握其应用要领。本书可以作为培养应用型人才的课程教材,也可作为相关开发人员的自学教材和参考手册。
本书完整全面地讲述数据挖掘的概念、方法、技术和近期新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的参考书,是一本适用于数据分析、数据挖掘和知识发现课程的优秀教材,可以用做高年级本科生或者一年级研究生的数据挖掘导论教材。
在大数据时代下,互联网平台产生的大规模海量搜索数据的价值不断得到学术界和工业界的重视。针对目前互联网海量搜索数据在预测和预警研究方面的不足,本书提出了一个基于互联网海量搜索数据的预测及预警分析框架,以互联网海量搜索数据为基础,通过网络文本挖掘、特征选择等方法确定关键词,将计量经济模型、人工智能模型等综合集成起来,提出了关键模型、方法和技术,并将所提出的分析框架成功地应用于国际原油价格和旅游行业的预测及预警研究中,且验证了研究框架的有效性。