本书图文并茂、通俗易懂,详细讲解数据结构和算法进阶知识,并融入大量的竞赛实例和解题技巧,可帮助读者领悟数据结构和算法的精髓,并熟练应用其解决实际问题。 本书总计8章。第1章讲解数据结构进阶知识,涉及分块算法和跳跃表;第2章讲解字符串算法进阶知识,涉及AC自动机和后缀数组;第3章讲解树上操作,涉及树链剖分、点分治和边分治;第4章讲解复杂树,涉及KD树、左偏树、动态树和树套树;第5章讲解可持久化数据结构,涉及可持久化线段树和可持久化字典树;第6章讲解图论算法进阶知识,涉及EK算法、Dinic算法、ISAP算法、二分图匹配、最大流最小割和最小费用最大流;第7章讲解动态规划进阶知识,涉及背包问题进阶知识和树形DP进阶知识;第8章讲解复杂动态规划及其优化,涉及数位DP、插头DP、斜率优化和四边不等式优化。 本书面向对数据结
这是一本关于 高级/进阶 算法和数据结构的图书,主要介绍了用于Web应用程序、系统编程和数据处理领域的各种算法,旨在让读者了解如何用这些算法应对各种棘手的编码挑战,以及如何将其应用于具体问题,以应对新技术浪潮下的 棘手 问题。 本书对一些广为人知的基本算法进行了扩展,还介绍了用于改善优先队列、有效缓存、对数据进行集群等的技术,以期读者能针对不同编程问题选出更好的解决方案。书中示例大多辅以图解,并以不囿于特定语言的伪代码以及多种语言的代码样本加以闸释。 学完本书,读者可以了解高级算法和数据结构的相关内容,并能运用这些知识让代码具备更优性能,甚至能够独立设计数据结构,应对需要自定义解决方案的情况。 本书可作为高等院校计算机相关专业本科高年级学生以及研究生的学习用书,也可供从事与算法相关工作
《算法竞赛入门经典》: 《算法竞赛入门经典》是一本算法竞赛的入门与提高教材,把C/C 语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、CH与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。 《算法竞赛入门经典》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI
《算法竞赛入门经典(第2版)》: 核心算法理论书,系统地讲解C/C 语言基础知识,数据结构知识,以及信息学奥赛和ACM/ICPC中的常考必考算法知识点、技巧和剖析。适合零基础的初学者学习。 《算法竞赛入门经典 训练指南》: 针对更多的算法竞赛题型进行横向拓展,提供更广范围内的算法讲解和训练, 覆盖面广,点到为止,注重代码 是该书的特点。 《算法竞赛入门经典 习题与解答》: 《算法竞赛入门经典(第2版)》的配套习题详解,针对其中的多数习题进行了算法分析和代码解析,使其更简单、易学,可快速提升读者的算法思维能力。 《算法竞赛入门经典 算法实现》: 竞赛备考工具书,ACM/ICPC/NOI等经典算法、题型全覆盖,提供240余套简洁、高效、规范的模板代码。
本书图文并茂、通俗易懂,详细讲解常用的算法知识,又融入大量的竞赛实例和解题技巧,可帮助读者熟练应用各种算法解决实际问题。本书总计8章。第1章讲解STL,涉及双端队列、优先队列、位图、集合、映射和STL中的常用函数;第2章讲解实用的数据结构,涉及并查集、倍增、稀疏表、区间最值查询、最近公共祖先、树状数组和线段树;第3章讲解查找算法,涉及散列表、字符串模式匹配和字典树;第4章讲解平衡树,涉及树高与性能、平衡二叉搜索树、树堆和伸展树;第5章讲解图论提高方面的知识,涉及连通图与强连通图、桥与割点、双连通分量的缩点和Tarjan算法;第6章讲解图论算法,涉及最小生成树、最短路径、拓扑排序和关键路径;第7章讲解搜索算法提高方面的知识,涉及剪枝优化、嵌套广度优先搜索、双向广度优先搜索和启发式搜索;第8章讲解动态规划
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
本书从一系列有趣的生活实例出发,全面介绍了构造算法的基础方法及其广泛应用,生动展现了算法的趣味性和实用性。书中介绍了算法在多个领域的应用,如图像处理、物理实验、计算机图形学、数字音频处理、机器学习等。其中,既有各种大名鼎鼎的算法,如神经网络、遗传算法、离散傅里叶变换算法、KNN、贝叶斯算法,也有不起眼的排序和概率计算算法。本书讲解浅显易懂而不失深度和严谨,对程序员有很大的启发意义。书中所有示例都与生活息息相关,充分地展现了算法解决问题的本质,让你爱上算法,乐在其中。本书在第1版的基础上新增了图像处理算法、游戏开发中检测碰撞常用的分离轴 (SAT)算法、垃圾邮件过滤相关的算法、中文分词算法、限流算法、手写数字识别和变声器等,进一步提升趣味性。 本书适合软件开发人员、编程和算法爱好者以及
《C Primer Plus(第6版)中文版》详细讲解了C语言的基本概念和编程技巧。《C Primer Plus(第6版)中文版》共17章。第1章、第2章介绍了C语言编程的预备知识。第3章~第15章详细讲解了C语言的相关知识,包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串函数、内存管理、文件输入和输出、结构、位操作等。第16章、第17章介绍C预处理器、C库和高级数据表示。本书以丰富多样的程序为例,讲解C语言的知识要点和注意事项。每章末尾设计了大量复习题和编程练习,帮助读者巩固所学知识和提高实际编程能力。附录给出了各章复习题的参考答案和丰富的参考资料。《C Primer Plus(第6版)中文版》可作为C语言的教材,适用于需要系统学习C语言的初学者,也适用于想要巩固C语言知识或希望进一步提高编程技术
深度学习和传统机器视觉技术相融合,可以大大提高AI 技术的效率和精度。本书分上、下两篇,共19 章内容,详细讲解了机器视觉及深度学习的理论和编程实践。上篇介绍理论算法。包括机器视觉的经典图像处理算法、深度学习的理论基础和目前常用的深度学习框架。下篇介绍编程环境及系统搭建。讲解了机器视觉图像处理算法及深度学习的编程工具 VC 、Python 和 OpenCV;利用 VC 和 Python 工具,搭建图像处理的工程界面;介绍了常用的9 种深度学习框架的获得方法、安装设置、工程创建,以及深度学习工程的编译、训练、评估与部署方法。每一个搭建的工程,都提供一套可下载的源代码程序,方便读者下载学习。本书理论与实践兼顾,可为从事机器视觉技术及人工智能研究和应用的工程技术人员提供帮助,也可供高等院校相关专业师生学习参考。
本书偏重于实战,面向UEFI的爱好者和使用者。全书共12章,大致可以分为三部分。%26amp;lt;br%26gt;1.第1部分为介绍UEFI的基础框架,搭建开发和调试环境,并熟悉代码框架的搭