《算法竞赛入门经典(2版)》是一本算法竞赛的入门与提高教材,把C/C 语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、C 与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。 《算法竞赛入门经典(2版)》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI)和ACM国际大学生程序
本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用算法为软件开发助力。前三章介绍算法基础,包括二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如何时采用分而治之、贪婪算法或动态规划,哈希表的应用,图和树算法,K最近邻算法等。这一版将示例代码更新到了Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
本书是算法竞赛的入门和进阶教材,包括算法思路、模板代码、知识体系、赛事相关等内容。本书把竞赛常用的知识点和竞赛题结合起来,讲解清晰、透彻,帮助初学者建立自信心,快速从实际问题入手,模仿经典代码解决问题,进入中级学习阶段。 全书分为12章,覆盖了目前算法竞赛中的主要内容,包括算法竞赛概述、算法复杂度、STL和基本数据结构、搜索技术、高级数据结构、基础算法思想、动态规划、数学、字符串、图论、计算几何。 本书适合用于高等院校开展的ICPC、CCPC等算法竞赛培训,中学NOI信息学竞赛培训,以及需要学习算法、提高计算思维的计算机工作者。
随着机器视觉技术的飞速发展,大量需要使用机器视觉代替人工检测的需求应运而生。Halcon在开发机器视觉项目中表现出的高效性和稳定性,使其应用范围非常广泛。本书将针对机器视觉的原理和算法,以及如何应用算法解决问题进行探讨和说明,并利用Halcon对各种机器视觉算法进行举例,让读者全面、深入、透彻地理解Halcon机器视觉开发过程中的各种常用算法的原理及其应用方法,提高实际开发水平和项目实战能力。同时,也为机器视觉项目的管理者提供项目管理和技术参考。 《Halcon机器视觉算法原理与编程实战》适合需要全面学习机器视觉算法的初学者,希望掌握Halcon进行机器视觉项目开发的程序员,需要了解机器视觉项目开发方法的工业客户、机器视觉软件开发项目经理、专业培训机构的学员,以及对机器视觉算法兴趣浓厚的人员阅读。
"《算法不难 》结合300多幅示意图与70个算法示例(Python实现)直观地讲述36种常用经典算法的相关知识和9种经典算法思想,帮助读者深入理解相关算法的原理与设计思想,为后续学习高级算法夯实基础。 《算法不难 》分为5章。第1章介绍算法的基本概念以及如何正确使用和设计算法等相关知识;第2章介绍排序算法的基本思想以及冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序十大排序算法;第3章首先介绍图算法的基础知识,然后介绍路径搜索、广度优先搜索、深度优先搜索、最小生成树、单源最短路径、最大流等常用图算法。第4章介绍字符串处理算法的相关知识,涵盖字符串基础知识以及字符串判断、字符串匹配、字符串排序和字符串压缩等。第5章介绍枚举、递推、递归、分治、贪心、动态规划、迭代
《智能优化算法与MATLAB编程实践》介绍了国内外新研发的10种智能优化算法,对每种算法的灵感来源、实现过程、函数编程、案例应用都进行了细致描述并给出详细的MATLAB代码,使读者快速掌握智能优化算法的学习和应用方法。 全书共分为12章,前10章分别介绍10种智能优化算法的原理、MATLAB实现、具体函数寻优求解过程和应用案例;第11章列举了23种衡量智能优化算法性能的常见测试函数,并给出MATLAB代码;第12章重点介绍智能优化算法的评价指标体系,选取部分测试函数和文中算法进行测试与分析,并给出完整MATLAB代码,供读者参考。 本书的主要特点为算法新颖,要素齐全,案例丰富,可移植性和实战性强。理论研究和工程技术人员可通过本书快速理解、掌握书中算法,节省大量时间,感兴趣的读者可以在此基础上进行深入研究。 本书可作为本科生、研究生和教
本书围绕黎曼流形优化发展过程中的理论前沿与热点问题,比较全面和系统地介绍了黎曼流形优化的基本原理和应用实践的最新成果。全书共7章,分为理论与应用两个部分。理论部分包括黎曼流形内涵、常用黎曼流形及其几何结构、收缩、低秩流形收缩、黎曼最速下降法、黎曼牛顿法、黎曼共轭梯度法、黎曼信赖域法和黎曼拟牛顿法等内容。应用部分包括鉴别性结构化字典学习、多源多波段图像融合、特征值问题求解(单位球面约束的Rayleigh商最小化、Stiefel流形上的Brockett函数最小化)等。本书内容新颖、体系完整,具有系统性、实用性、先进性和前瞻性。
作者莱维汀基于丰富的教学经验,开发了一套全 新的算法分类方法。该分类法站在通用问题求解策略 的高度,对现有大多数算法准确分类,从而引领读者 沿着一条清晰、一致、连贯的思路来探索算法设计与 分析这一迷人领域。本书作为第3版,相对前版调整 了多个章节的内容和顺序,同时增加了一些算法,并 扩展了算法的应用,使得具体算法和通用算法设计技 术的对应更加清晰有序;各章累计增加了70道习题, 其中包括一些有趣的谜题和面试问题。 《算法设计与分析基础(第3版)》十分适合用作 算法设计和分析的基础教材,也适合任何有兴趣探究 算法奥秘的读者使用,只要读者具备数据结构和离散 数学的知识即可。
本书是一本综合讲述数据结构及其算法的入门书,内容浅显易懂、逻辑严谨,范例丰富、可操作性强,力求适用性兼顾教师教学和学生自学。 全书从基本的数据结构概念开始讲解,包括数组结构、队列、堆栈、树结构、排序、查找等;接着介绍常用的算法,包括分治法、递归法、贪心法、动态规划法、迭代法、枚举法、回溯法等,每个经典的算法都提供了Java程序设计语言编写的完整范例代码,并辅以丰富的图示解析。*后在每章末尾都安排了大量的习题,这些习题包含各类考试的例题,并在附录中提供了解答,可供读者自测学习效果。 本书针对具有一定编程能力又想提高编程 深度 的非信息专业类人员,是一本数据结构和算法普及型的教科书或自学参考书。
本书既清晰、简洁地介绍了标准数值分析教材所涵盖的内容,也介绍了非传统的内容,比如数学建模、蒙特卡罗方法、马尔可夫链和分形。书中选取的例子颇具趣味性和启发性,涉及现代应用领域(如信息检索和动画)以及来自物理和工程的传统主题。习题用MATLAB求解,使计算结果更容易理解。各章都简短介绍了数值方法的历史。而且还有网上资料。
自然语言处理是一门融语言学、计算机科学、数学于一体的学科,比较复杂,学习门槛高,但本书巧妙地避开了晦涩难懂的数学公式和证明,即便没有数学基础,也能零基础入门。 本书专注于中文的自然语言处理,以Python及其相关框架为工具,以实战为导向,详细讲解了自然语言处理的各种核心技术、方法论和经典算法。三位作者在人工智能、大数据和算法领域有丰富的积累和经验,是*、前明略数据和七牛云的资深专家。同时,本书也得到了*达摩院高级算法专家、七牛云AI实验室Leader等专家的高度评价和鼎力推荐。 全书一共11章,在逻辑上分为2个部分: *部分(第1、2、11章) 主要介绍了自然语言处理所需要了解的基础知识、前置技术、Python科学包、正则表达式以及Solr检索等。 第二部分(第5-10章) 第3~5章讲解了词法分析相关的技术,包括中文分词技术
本书内容包括经典的算法设计技术,主要介绍数据结构和标准模板库、递归与分治策略、动态规划、贪心算法、回溯算法、分支限界算法、图的搜索算法、图论、数论和组合数学问题。本书包括大量的问题实例,并在北京大学、浙江大学和杭州电子科技大学在线题库中精选原题,详细地分析解题的方法,深入浅出地讲解用到的算法,章后的上机练习题也选自在线题库中的典型题目,供读者练习,以巩固所学算法。本书内容基本上涵盖了目前大学生程序设计竞赛所要掌握的算法。 本书结构清晰、内容丰富,适合作为计算机科学与技术、软件工程以及相关学科算法课程的教材或参考书,特别适合有志于参加信息学竞赛和ACM大学生程序设计竞赛的读者学习和训练。
本书是一本面向问题求解的计算机算法普及读物。笔者挑选了24个问题,有些属于计算机科学中的经典,有些则来自游戏等其他领域的场景,旨在提供一个不同于普通算法教科书的视野。在相关求解算法的介绍上大体遵循问题导入、算法思路、算法描述和算法分析的思路,从而使得对每一个问题和算法的讨论相对独立。全书可以任意顺序选读。 本书适合受过高中及其以上教育的读者,适合作为中学信息技术课程改革和大学计算机基础课的教学参考书,也有助于曾经学过计算机相关课程的读者加深关于算法的认识。
本书以图解的方式综合讲述算法及其数据结构,内容浅显易懂,逻辑严谨,范例丰富,易于学习和掌握,力求兼顾教师教学和学生自学。 全书内容分为五部分,共12章:计算思维与算法(第1~3章)介绍各个经典的算法,包括分治法、递归法、贪心法、动态规划法、迭代法、枚举法、回溯法等;数据结构相关算法(第4~6章)讲述重要的数据结构及其相关算法的实现,数据结构包括数组、链表、堆栈、队列、树结构、图结构、哈希表;排序与查找算法(第7、8章)讲述排序算法和查找算法;树结构与图结构相关算法(第9、10章)讲述数组和链表相关算法、堆栈和队列相关算法、树结构相关算法和图结构相关算法;现代议题算法(第11、12章)讲述信息安全基础算法、人工智能基础算法等。 书中为每个算法及其数据结构提供演算的详细图解,并为每个经典的算法提供JavaScri
本书较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共辄梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法;约束问题的罚函数法、乘子法、可行方向法、序列二次规划算法和信赖域算法等。还介绍了线性规划的基本理论与单纯形算法以及求解二次规划的有效集法。并简单介绍了求解全局最优化问题的几种常用算法。 作为基本工具,本书在附录中简要介绍了求解线性方程组的常用直接法和选代法以及MATLAB初步知识。
部分介绍了电子防御(即美军的电子战)的基本概念、构成和压缩感知的基本理论、算法。第二部分首先描述了基于压缩感知(CS)的移位键控调制信号的DOA估计实现过程和关键环节;然后重点介绍了基于CS的移位键控调制信号重构算法及仿真实现,基于CS重构的调制信号DOA估计算法及仿真实现;后介绍了基于CS的电子支援频谱感知技术。第三部分总结了基于CS的信号DOA估计和频谱感知技术,给出了它们的性能分析和扩展以及与传统算法的比较。
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了最基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算
本书主要介绍并行计算相关的算法的设计和并行计算的性能优化技巧,涵盖现代处理器的特性、衡量程序性能的方法、串行代码性能优化、并行编程模型及其环境、并行算法设计、遗留代码的并行处理、并行编程模型、混合并行等核心技法与实践技巧。
在线广告是一个多学科交融的领域,本书力求系统地讲解在线广告的架构和算法,让读者对在线广告有一个整体的认识。全书共15章,第1~3章介绍在线广告的发展简史、样式与创意以及广告系统的架构流程等基础知识;第4~7章从品牌广告、搜索类广告、社交类广告和视频类广告4种典型的广告出发,详细讲解广告系统的更多设计细节; 第8~14章分类讲述在线广告中的重要研究领域,包括用户数据和定向算法、点击率预估与推荐算法、在线匹配、机制设计、低质量和敏感控制、实验架构和调参,以及数据监控和效果衡量; 第15章简要介绍在线广告的发展趋势。本书可作为对在线广告感兴趣的初学者的入门书籍,也可供在线广告相关领域的从业者阅读参考。