本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
求非线性问题的解析近似解最著名的是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
本书是一本介绍时滞微分方程稳定性理论的入门书,由6章和附录组成第1章是绪论,以简单的一维Logistic方程为出发点,结合丰富的计算机数值模拟,简要直观地概括了时滞对方程动力学性质的影响。第2章简要介绍传统的特征值方法在一些特殊的一维和二维线性自治方程零解稳定和振动性研究中的应用。第3章以简单独特的方式介绍Liapunov-Razumikhin方法的基本思想和在一些具体方程中的应用。第4章和第5章主要介绍时滞微分方程解的基础理论,主要包括解的存在唯一性,解的延拓和解对初始值的连续依赖性以及线性自治方程生成的解半群的分解等第6章详细介绍基于Liapunov泛函方法与Liapunov-Razumikhin方法建立的稳定性定理以及LaSalle不变性原理。为方便读者,本书在附录一和附录二中还介绍一些超越方程零点分布问题以及Dini导数的概念与性质。
.
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干最大难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书紧扣高等学校微积分课程的教学基本要求,介绍了微积分的基本概念、基本理论和基本方法,是根据 高等学校教学指导委员会制定的“经济管理类本科数学基础课程教学基本要求”编写而成。 全书共分为八章,内容包括函数、一元函数微积分学、多元函数微积分学、无穷级数、微分方程与差分方程.每章配有习题及延展阅读,书后附有习题参考答案,既便于教学,也利于学生预习学习、复习巩固。 本书以本科人才培养计划为标准,以锻炼学生的应用创新能力为目的,强化应用性和实用性,适合高等学校经济管理类本科各专业使用,也可以作为有关专业技术人员、科技工作者工作参考用书。
离散数学是研究离散量的结构和相互间关系的学科,是计算机、软件工程等专业的理论基础。本书依据教育.部计算机科学与技术教学指导委员会编制的《高等学校计算机科学与技术专业规范》和《高等学校计算机科学与技术
本书是与上海财经大学数学学院编写的《经济数学——微积分》配套的学习指导书.本书是按照 高等学校大学数学课程教学指导委员会颁布的经济和管理类本科数学基础课程教学基本要求,充分吸取当前 微积分教材的精华,并结合编者多年教学改革与教学实践经验,针对当前经济和管理类院校各专业对数学知识的实际需求及学生的知识结构和习惯特点编写而成的.本书共6章,主要内容包括:函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,二元函数微积分初步.每章包含知识结构图示、内容归纳总结、典型例题解析、自测练习试卷及习题、总复习题及详解5部分.自测练习试卷方便学生自检,每份试卷总分为100分,其中试卷满足相关课程基本要求,学生每学完一章后可在规定时间(每份试卷2小时)内独立完成试卷,以测
《微积分教与学要览/大学数学教与学研究系列》参照经、管、文科《微积分》教学的基本内容,根据各章的内容分节论述微积分教与学的问题,每节均由教学目标:内容提要、疑点解析、例题分析和练习题五个部分组成,教学目标根据微积分教学大纲的基本要求,逐点进行编写,目的是把教学目标交给学生,使学生了解教学大纲的精神和教师的要求,从而增强学习的主动性和目的性;内容提要以各节的知识结构为框架,用树形图表的方式,简明扼要地总结、概括各节的主要内容,从而使学生掌握各个知识之问的联系,使零散的知识形成系统的知识结构;疑点解析围绕教学的重点、难点,从不同侧面阐述有关知识点的数学思想、数学方法和教学方法等方面的内容,从而加深知识的理解、解决微积分教学中可能出现的一些问题;例题分析选择、构造一些比较典型的题
本书紧扣高等学校微积分课程的教学基本要求,介绍了微积分的基本概念、基本理论和基本方法,是根据 高等学校教学指导委员会制定的“经济管理类本科数学基础课程教学基本要求”编写而成。 全书共分为八章,内容包括函数、一元函数微积分学、多元函数微积分学、无穷级数、微分方程与差分方程.每章配有习题及延展阅读,书后附有习题参考答案,既便于教学,也利于学生预习学习、复习巩固。 本书以本科人才培养计划为标准,以锻炼学生的应用创新能力为目的,强化应用性和实用性,适合高等学校经济管理类本科各专业使用,也可以作为有关专业技术人员、科技工作者工作参考用书。
本书紧扣高等学校微积分课程的教学基本要求,介绍了微积分的基本概念、基本理论和基本方法,是根据 高等学校教学指导委员会制定的“经济管理类本科数学基础课程教学基本要求”编写而成。 全书共分为八章,内容包括函数、一元函数微积分学、多元函数微积分学、无穷级数、微分方程与差分方程.每章配有习题及延展阅读,书后附有习题参考答案,既便于教学,也利于学生预习学习、复习巩固。 本书以本科人才培养计划为标准,以锻炼学生的应用创新能力为目的,强化应用性和实用性,适合高等学校经济管理类本科各专业使用,也可以作为有关专业技术人员、科技工作者工作参考用书。
本书是一本 有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用 简单、 有趣、 容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你 通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得 从容自信。