现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
微分几何是20世纪*重要且*富生命力的数学分支,其历史可追溯到牛顿时代的微积分学,19世纪几何学变革中它获得了历史性进步,其中高斯作出了奠基性贡献。本书将高斯的内蕴微分几何学与其非欧几何学研究视为一个完整统一的思想体系,深入研究高斯的内蕴微分几何学思想与非欧几何学思想产生的历史背景与内在联系。主要内容有:高斯内蕴微分几何学的思想渊源;高斯的非欧几何学研究;高斯内蕴微分几何学的创立;高斯内蕴微分几何学的基本思想 《关于曲面的一般研究》之研究;高斯的几何学思想及其意义;高斯非欧几何学思想的实现途径;高斯-博内-陈定理的历史发展及其意义等。本书为18世纪末19世纪初几何学发展的历史研究提供了一个新的视角。 本书适合于数学专业大学生、研究生及有关教师阅读,特别是对近现代数学史(微分几何学)感兴趣的
《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题.《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》共有9章:第1章引言,第2章历史与经典结果,第3章近代理论介绍——关于高维求积公式的某些简单定理,第4章二次及三次的高维求积公式,第5章构造数值积分公式的算子方法,第6章高维积分的“降维法”与二维求积公式的一种构造法,第7章高维矩形区域上的数值积分与误差估计,第8章多元周期函数的数值积分与误差估计,第9章高维数值积分公式的误差界限决定法。 《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》适合大、中学师生及数学爱好者阅读及收藏。
《在陈省身先生影响下的微分几何》是献给20世纪伟大的几何学家之一陈省身先生100周年诞辰的纪念文集。它包括了世界各地的数学家、特别是华人数学家的优秀研究文章。这些文章评述了陈省身先生所研究领域的目前状况,并讨论未来的发展方向,r8容涵盖了Gauss—Bonnet公式、共形几何、CR几何、流形、Ricci流、Einstein度量、等参超曲面、比较定理.Tits厦等方面。 《在陈省身先生影响下的微分几何》适合研究生和年轻的数学工作者阅读,其他读者亦可从中找到相关领域的有价值的信息。
徐森林、金亚东、胡自胜、薛春华编著的这本《微分几何学习指导》是中国科学技术大学出版社出版的《微分几何》的配套书,它可帮助读者熟练地掌握微分几何的内容和方法。《微分几何学习指导》对《微分几何》一书的全部习题做了详细的解答,并增加了一些有趣的习题以及联系古典微分几何与近代微分几何的典型题目。 《微分几何学习指导》可用作综合性大学、理工科大学、师范大学数学系高年级学生、教师和研究人员的参考书。
本书主要是以度量空间为基础进行拓扑学性质的探究. 对于读者而言,以度量空间为基础可以降低拓扑学的入门难度. 与此同时本书也介绍了对于拓扑学而言相对重要的结果, 特别是其他中文书籍相对较少涉及的拓扑学维数论, 无限维拓扑学等的相关结果也在本书中有所体现. 此外, 重视拓扑学和其他学科的结合是本书的一个特点.本书从基本的集合论知识起步, 先介绍了度量空间、连续映射、度量空间的连通性和紧性,然后介绍了可分度量空间、完备度量空间、Baire空间, 还包含了这些结论在分析学中的应用、Cantor集的拓扑特征及其万有性; 进一步, 本书定义了拓扑空间,并把度量空间的拓扑学知识推广到了更一般的拓扑空间中, 并定义了仿紧性, 证明了一些可度量化定理等. 最后本书证明了Michael选择定理、Dugundji扩张定理、Brouwer不动点定理和Anderson定理.
本书共八章,主要包含圆锥曲线的由来、定义、方程、性质、切线和法线、作图、通论以及举例应用等内容,深入浅出,通俗易懂。 本书适用于中学生和数学教师参考使用,也可供数学爱好者作为科学普及读物阅读。